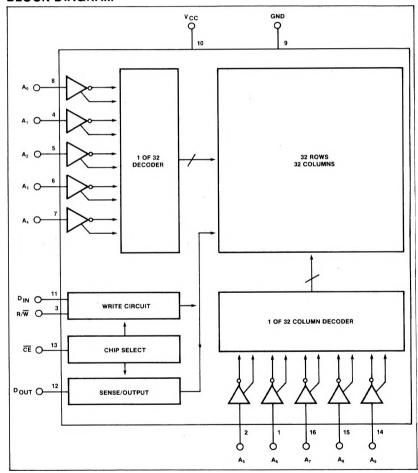
21F02-F.I.N • 21F02-2 - F.I.N • 21F02-4 - F.I.N

DESCRIPTION

The 21F02 is a high speed static random access memory element using n-channel MOS devices integrated on a monolithic array. It uses fully do stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data.


The 21F02 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives. A separate chip enable (CE) lead allows easy selection of an individual package when outputs are OR-tied.

The Signetics 21F02 is fabricated with nchannel silicon gate technology. This technology allows the design and production of high performance easy to use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or p-channel silicon gate technology.


FEATURES

- Fully TTL compatible
- Single 5V supply

PIN CONFIGURATION

BLOCK DIAGRAM

21F02-F,I,N • 21F02-2 - F,I,N • 21F02-4 - F,I,N

ABSOLUTE MAXIMUM RATINGS1

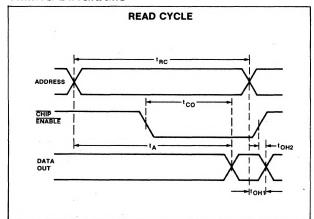
	PARAMETER	RATING	UNIT		
	Temperature range		°C		
TSTG	Storage	-65 to 150			
P_D	Power dissipation ²				
	N package	640	mW		
	F package	1	w		
	I package	1	w		
	All input, output and supply voltages with respect to ground	-0.5 to 7	V		

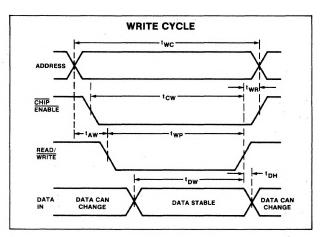
DC ELECTRICAL CHARACTERISTICS T_A = 0°C to 70°C, V_{CC} = 5V ± 5% unless otherwise specified.

		• • • • • • • • • • • • • • • • • • • •						
	DADAMETED	TEST CONDITIONS						
	PARAMETER	TEST CONDITIONS	Min	Typ ³	0.8 Vcc	UNIT		
VIL VIH	Input voltage Low High		-0.5 2.0			V		
V _{OL} Voh	Output voltage Low High	I _{OL} = 2.1mA I _{OH} = -100μA	2.4		0.4	V		
ILI	Input load current (All input pins)	V _{IN} = 0 to 5.25V			10	μА		
ILOH ILOL	Output leakage current	CE = 2.0V V _{OUT} = 2.4 to V _{CC} V _{OUT} = 0.4V			5 -10	μА		
ICC1	Supply current	All inputs = 5.25V, Data out open $T_A = 25^{\circ}C$ $T_A = 0^{\circ}C$		30	60 70	mA		

AC ELECTRICAL CHARACTERISTICS $T_A = 0$ °C to 70°C, $V_{CC} = 5V \pm 5\%$ unless otherwise specified, Input pulse levels = 0.65 to 2.2V, Input pulse rise and fall times = 20ns, Timing measurement reference level = 1.5V, Output load = 1 TTL gate and C_L = 100pF

				21F02		21F02-2		21F02-4					
1	PARAMETER	то	FROM	Min	Typ ³	Max	Min	Typ ³	Max	Min	Typ3	Max	UNIT
trc ta tco	READ CYCLE Read cycle Access time	Output time	Chip enable	350		350 180	250		250 130	450		450 230	ns ns ns
ton1	Previous read data valid with respect to Address Chip enable			40 0			40 0			40 0			ns
twc twp twn	WRITE CYCLE Write cycle Write pulse width Write recovery time			350 250 20			250 180 20			450 300 20			ns ns ns
taw tow toh tcw	Setup and hold time Setup time Setup time Hold time Setup time	Write Output Output Write	Address Data Data Chip enable	20 250 0 250			20 180 0 180			20 300 0 300			ns


NOTES on following page.


21F02-F,I,N • 21F02-2 - F,I,N • 21F02-4 - F,I,N

NOTES

- Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device of these or any other condition above those indicated in the operation sections of this specification is not implied.
- For operating at elevated temperatures the device must be derated based on a +150°C
 maximum junction temperature and a thermal resistance of 150°C/W junction to
 ambient (B package).
- 3. Typical values are at +25°C and typical supply voltages.
- 4. All inputs protected against static charge.
- 5. Parameter valid over operating temperature range unless otherwise specified.
- 6. All voltage measurements are referenced to ground.
- Manufacturer reserves the right to make design and process changes and improvements.

TIMING DIAGRAMS

