DUAL 100-BIT DYNAMIC SHIFT REGISTER (100X2)

2506/2507/2517

2506-T,N • 2507-T,N • 2517-T,N

DESCRIPTION

These Signetics 2500 Series dual 100-bit Dynamic Shift Registers consist of enhancement mode p-channel MOS devices integrated on a single monolithic chip. They use 2 clock phases.

FEATURES

ΤA

PD

TSTG

- 2506: Bare drain
- 2507: 7.5K Pull down
- 2517: 20K Pull down

ABSOLUTE MAXIMUM RATINGS1

Temperature range

Operating

T package

N package

Clock input voltages

with respect to V_{CC}³

Storage

PARAMETER

Power dissipation at $T_A = 70^{\circ} C^2$

UNIT

۰C

mW

۷

BLOCK DIAGRAM

PIN CONFIGURATIONS

Supply and d with respect	ata input voltages	0.3 to -12	V	

RATING

0 to 70

-65 to 150

535

455

0.3 to -20

DC ELECTRICAL CHARACTERISTICS $T_A = 0^{\circ}C$ to 70°C, $V_{DD} = -5V \pm 5\%$, $V_{CC} = 5V4$, unless otherwise specified.5.6.7.8

PARAMETER			LIMITS			
		TEST CONDITIONS	Min	Тур	Max	UNIT
VIL	Input voltage ⁹ Low		-5		1.05	v
VIH	High		3.2		5.3	
VILC	Clock low		-12		-10	
VILC	Clock high		4	х.	5.3	
	Output voltage9	·····				v
VOH1	High (driving MOS)	$R_{INT} = 7.5k$ typ, $C_L = 10pF$, 2507 only $R_{INT} = 20k$ typ, 2517 only	3.4	4.0		
VOH2	High (driving TTL)	$R_L = 3.3k$, $V_{DD} = -5V$, 2506 only	3.0	3.5		
lu –	Load current	T _A = 25° C				nA
	Input 1	OUT 1, ϕ 1, ϕ 2 and V _{CC} = 5V, IN 2, OUT 2 and IN 1 = -5.5V, V _{DD} = -4.5V		10	500	
	Input 2	OUT 2, <i>φ</i> 1, <i>φ</i> 2 and V _{CC} = 5V, IN 1, OUT 1 and IN 2 = -5.5V, V _{DD} = -4.5V		10	500]
ILO	Leakage current ¹⁰ Out 1	$T_A= 25^{\circ}C$ IN 1, V _{CC} , OUT 2 and $\phi 2 = 5V$, IN 2, V _{DD} and OUT 1 = -5.5V, $\phi 1 = -5V$		10	1000	nA
	Out 2	IN 1, OUT 1, V _{CC} and ϕ 2 = 5V, IN 2, V _{DD} and OUT 2 = -5.5V, ϕ = -5V		10	1000	
ILC	Clock leakage current	$T_A = 25^{\circ}$ C, $V_{DD} = -4.5$ V, All other pins 5V				n/
	φ1 φ2	$V\phi 1 = -12V$ $V\phi 2 = -12V$		10 10	1000 1000	
IDD	V _{DD} supply current	Outputs at logic low or high 3MHz, $\phi_1 = 150$ ns, $\phi_2 = 100$ ns		12	26	mA
	Capacitance	1MHz, 25mV p-p	-			pF
CIN	Input (1 and 2)	$V_{IN} = V_{CC}$		2.5	5	
Cφ	Clock input (\u00c61,\u00f62)	$V\phi = V_{CC}$		25	40	1

signetics

DUAL 100-BIT DYNAMIC SHIFT REGISTER (100X2)

2506/2507/2517

2506-T,N • 2507-T,N • 2517-T,N

PARAMETER		TO FROM		TEST CONDITIONS	LIMITS			
			FROM		Min	Тур	Max	UNIT
Freq.	Clock rep rate				.0006	4	3	MHz
φ1PW φ2PW	Pulse width Clock φ1 Clock φ2			At 3MHz	150 100			ns
φd tR,tF tw tDO	Clock pulse delay Clock pulse transition Setup time Data in overlap	φ2	Data in	At 3MHz At 3MHz $t_{R02} = t_{R01} = 10$ ns	10 10 75 10		1000	ns ns ns ns
t _{A+}	Delay time	Data out	φ1	$V\phi = V_{CC} - 16V$, Data out = 2.5V	_	90	150	ns

AC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_{DD} = -5V \pm 5\%$, $V_{CC} = 5V4$, $V_{ILC} = -11V$

NOTES

 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.

2. For operating at elevated temperatures the device must be derated based on a +150°C maximum

junction temperature and a thermal resistance of 150°C/W (T package) or 175°C/W (V package). 3. All inputs are protected against static charge.

4. Vcc tolerance is ±5%. Any variation in actual Vcc will be tracked directly by VIL. VIH and VOH which are

stated for a Vcc of exactly 5 volts.

5. Parameters are valid over operating temperature range unless otherwise specified.

6. All voltage meuurements are referenced to ground.

7. Manufacturer reserves the right to make design and process changes and improvements.

8. Typical values are at +25°C and typical supply voltages.

9. Logic Convention: Data Lines - Positive; Clocks -Negative. 10. Vol. (for this bare drain device) is a function only of the driven gate characteristics

together with the external pull-down resistor. (RpD).

TIMING DIAGRAM

