

DUAL 100-BIT DYNAMIC Shift register

2506 2507 2517

SILICON GATE MOS 2500 SERIES

DESCRIPTION

These Signetics 2500 Series dual 100-Bit dynamic shift registers consist of enhancement mode P-channel MOS devices integrated on a single monolithic chip. They use two clock phases.

FEATURES

- HIGH FREQUENCY OPERATION
 4 MHz TYPICAL CLOCK RATE
- TTL, DTL COMPATIBLE
- LOW POWER DISSIPATION 400 µW/BIT AT 1 MHz
- LOW CLOCK CAPACITANCE 40pF MAXIMUM
- LOW OUTPUT IMPEDANCE 300 OHMS TYPICAL
- BARE DRAIN AND MOS RESISTOR VERSIONS
 AVAILABLE
- STANDARD PACKAGES 8 LEAD TO-5 AND 8 LEAD SILICONE DIP
- SIGNETICS P-MOS SILICON GATE AND SILICONE PACKAGING TECHNOLOGIES

APPLICATIONS

LOW COST SEQUENTIAL ACCESS MEMORIES LOW COST BUFFER MEMORIES

PROCESS TECHNOLOGY

Use of the low threshold silicon gate technology allows high speed (3 MHz guaranteed), while reducing power dissipation by a factor of 2 and reducing clock input capacitance dramatically as compared to conventional MOS technologies.

SILICONE PACKAGING

Low cost silicone DIP packaging is implemented and reliability is assured by the use of Signetics unique silicon gate MOS process technology. Unlike the standard metal gate MOS process the silicon material over the gate oxide passivates the MOS transistors, and the deposited dielectric material over the silicon gate-oxide-substrate structure provides an ion barrier. In addition, Signetics proprietary surface passivation and silicone packaging techniques result in an MOS circuit with inherent high reliability, demonstrating superior moisture resistance, mechanical shock and ionic contamination barriers. For further information reference Signetics - "Silicone Package Qualification Report". The dual 100 bit device can be driven directly by standard bipolar integrated circuits (TTL, DTL, etc.) or by MOS circuits. The design of the output stage provides driving capability for MOS or bipolar IC's.

It is available in bare drain configuration or with internal pull down resistor values of 7.5k or 20k to provide easier interfacing with other MOS circuitry.

PIN CONFIGURATIONS (TOP VIEW)

BLOCK DIAGRAM

PART IDENTIFICATION TABLE

PART NO.	OUTPUT	PACKAGE
2506 T	Bare Drain	8 Pin TO-5
2506 V	Bare Drain	8 Pin DIP
2507 T	7.5k Pull Down	8 Pin TO-5
2507 V	7,5k Pull Down	8 Pin DIP
2517 T	20k Pull Down	8 Pin TO-5
2517 V	20k Pull Down	8 Pin DIP

MAXIMUM GUARANTEED RATINGS (1)

Operating Ambient	0°C + 70°C
etoluge i emperatore	-65°C + 150°C
Power Dissipation (Note 2) @ T _A =70°C	
T Package	535mW
V Package	455mW
Clock Input Voltages with respect to VCC(3)	+0.3 to -20V
Supply and Data Input Voltages with	
respect to V _{CC} (3)	+0.3 to -12V

NOTES:

- Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
- For operating at elevated temperatures the device must be derated based on a +150°C maximum junction temperature and a thermal resistance of 150°C/W (T package) or 175°C/W (V package).
- 3. All inputs are protected against static charge.
- 4. Parameters are valid over operating temperature range unless otherwise specified.
- 5. All voltage measurements are referenced to ground.
- 6. Manufacturer reserves the right to make design and process changes and improvements.
- 7. Typical values are at +25°C and nominal supply voltages.
- 8. V_{CC} tolerance is ±5%. Any variation in actual V_{CC} will be tracked directly by V_{LL}. V_{LH} and V_{OH} which are stated for a V_{CC} of exactly 5 volts.
- 9. V $_{OL}$ (for this bare drain device) is a function only of the driven gate characteristics together with the external pull-down resistor. ($\rm R_{PD}$),
- 10. See Figure 2 for definitions.
- 11. Logic Convention: Data Lines Positive; Clocks Negative.

DC CHARACTERISTICS

 $T_A = 0^{\circ}C$ to +70°C; $V_{DD} = -5V \pm 5\%$; $V_{CC} = +5$ (8); unless otherwise noted(Notes: 4,5,6,7).

~

SYMBOL	TEST	MIN.	TYP.	MAX.	UNIT	CONDITIONS
LI	Input Load Current (Input 1)		10	500	nA	+5V ON OUT 1, ϕ 1, ϕ 2, V _{CC} , IN 2, OUT 2, IN 1 = -5.5V, V _{DD} = -4.5V, T _A = 25°C
'u	Input Load Current (Input 2)		10	500	nA	+5V ON OUT 2, 61 , 62 , V _{CC} , IN 1, OUT 1, IN 2 = -5.5 V, V _{DD} = -4.5 V, T _A = 25° C
'LO	Output Leakage Current (OUT 1) (Notes 9 & 10)		10	1000	nA	+5V ON IN 1, V _{CC} , OUT 2, d^2 , IN 2, V _{DD} , OUT 1 = -5.5V d^1 = -10V, T _A = 25°C (2506 Only
LO	Output Leakage Current (OUT 2) (Notes 9 & 10)		10	1000	nA	+5V ON IN 1, OUT 1, V_{CC} , ϕ^2 , IN 2, V_{DD} , OUT 2 = -5.5V, $\phi = -10V$, $T_A = 25^{\circ}C$ (2506 Only)
LC	Clock Leakage Current (ø1)		10	1000	nA	$V \phi 1 = -12 V, V_{DD} = -4.5V$ All other pins +5V, $T_A = 25^{\circ}C$
LC	Clock Leakage Current (¢2)		10	1000	nA	$V_{62} = -12V, V_{DD} = -4.5V$ All other pins +5V $T_{A} = 25^{\circ}C$
VIL	Input "Low" Voltage (Note 1 1)	-5		1.05	v	
VIH	Input "High" Voltage (Note 1 1)	3.2		5.3	v	
C _{IN}	Input Capacitance (Inputs 1 & 2)		2.5	5	ρF	V _{IN} = V _{CC} , 1 MHz, 25 mV p-p
¢,	Clock Input Capacitance (\$1,\$2)		25	40	pF	Vg = V _{CC} , 1 MHz, 25 mV p-p
VIHC	Clock Input "High" Voltage	4		5.3	v	
VILC	Clock Input "Low" Voltage	-12	†——–	-10	v	

CONDITIONS OF TEST

Data amplitude +1.05 to +3.2 Input rise and fall times: 10 nsec. Output load is 1 TTL gate.

TIMING DIAGRAM

AC CHARACTERISTICS

 $T_A = 25^{\circ}C; V_{DD} = -5V \pm 5\%; V_{CC} = +5V$ (8) ; $V_{ILC} = -11V$

SYMBOL	TEST	MIN	ТҮР	MAX	UNIT	CONDITIONS
Frequency	Clock Rep Rate	0006	4	3	MHz	
φ IPW	Clock Pulse Width ϕ_1	150			nsec	@ 3MHz.
φ 2PW	Clock Pulse Width ϕ_2	100			nsec	@ 3MHz.
φd	Clock Pulse Delay	10			nsec	@ 3MHz
t _r , t _f	Clock Pulse Transition	10		1000	nsec	
tw	Data Write Time (Set-Up)	75				
^t DO	Data In Overlap	10				τ _{rφ2} = t _{rφ1} = 10nS
ta+	Clock to Data Out		90	150		V φ = V _{CC} – 16V, DATA OUT =+2.5V
V _{OH1}	Output "High" Voltage driving MOS (Note 11)	3.4	4.0		v	R _{INT} = 7.5k nom., C _L = 10pF, 2507 Only, R _{INT} = 20k nom. 2517 only
V _{OH2}	Output "High" Voltage driving TTL (Note 11)	3.0	3.5		v	R _L = 3.3k, V _{DD} = -5V 2506 only
DD	Power Supply Current (V _{DD})		12	26	mA	Outputs @ logic "0" or "1", 3MHz, \$

CHARACTERISTIC CURVES

APPLICATIONS DATA DTL/TTL/MOS INTERFACES

CIRCUIT SCHEMATIC

