# 512-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (512X1) 1024-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (1024X1)

2524-N • 2525-N

2524 2525

# DESCRIPTION

The 2525 1024-bit recirculating dynamic shift register consists of enhancement mode p-channel MOS devices integrated on a single monolithic chip. Internal recirculation logic plus write and read controls are included on the chip.

# **TRUTH TABLE**

| WRITE | WRITE READ FUNCTION |                             |  |  |  |
|-------|---------------------|-----------------------------|--|--|--|
| 0     | 0                   | Recirculate, Output is '0'  |  |  |  |
| 0     | 1                   | Recirculate, Output is data |  |  |  |
| 1     |                     | Write mode, Output is '0'   |  |  |  |
| 1     | 1                   | Read mode, Output is data   |  |  |  |
| 1     |                     |                             |  |  |  |

#### **PIN CONFIGURATION**



# **BLOCK DIAGRAM**



### **ABSOLUTE MAXIMUM RATINGS1**

| PARAMETER |                                                                                         | RATING     |    |
|-----------|-----------------------------------------------------------------------------------------|------------|----|
|           | Temperature range <sup>2</sup>                                                          |            | °C |
| TA        | Operating                                                                               | 0 to 70    |    |
| TSTG      | Storage                                                                                 | -65 to 150 |    |
| PD        | Power dissipation at $T_A > 70^{\circ} C^2$                                             | 535        | mW |
|           | Data and clock input<br>voltages and supply<br>voltages with respect to V <sub>CC</sub> | 0.3 to -20 | v  |

#### **DC ELECTRICAL CHARACTERISTICS** T<sub>A</sub> = 0°C to 70°C, $V_{CC} = 5V \pm 5\%$ , $V_{DD} = -5V \pm 5\%$ unless otherwise specified.

| PARAMETER                  |                                                                                            |                                                                                                                                                                                                                                      | 2524                        |                    |                            | 2525                        |                    |                            |      |
|----------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|----------------------------|-----------------------------|--------------------|----------------------------|------|
|                            |                                                                                            | TEST CONDITIONS                                                                                                                                                                                                                      |                             | Тур                | Max                        | Min                         | Тур                | Max                        | UNIT |
| VIL<br>VIH<br>VILC<br>VIHC | Input voltage <sup>3</sup><br>Low<br>High<br>Clock low<br>Clock high                       |                                                                                                                                                                                                                                      | -5.0<br>3.4<br>-12.0<br>4.0 |                    | 0.6<br>5.3<br>-10.0<br>5.3 | -5.0<br>3.4<br>-12.0<br>4.0 |                    | 0.6<br>5.3<br>-10.0<br>5.3 | v    |
| Vol<br>Voh1<br>Voh2        | Output voltage<br>Low, driving 1 TTL load<br>High, driving 1 TTL load<br>High, driving MOS | $ \begin{array}{l} R_L = 3.0 \text{K}, \mbox{ 1 TTL load } (\text{I}_L = 1.6 \text{mA})^4 \\ R_L = 3.0 \text{K}, \mbox{ 1 TTL load } (\text{I}_L = 100 \mu \text{A}) \\ R_L = 5.6 \text{K}, \mbox{ C}_L = 10 \text{pF} \end{array} $ | 2.4<br>3.6                  | -1.0<br>3.5<br>4.0 |                            | 2.4<br>3.6                  | -1.0<br>3.5<br>4.0 |                            | v    |
| l <u>L</u> I               | Input load current                                                                         | $V_{IN} = -5.5V, T_A = 25^{\circ}C$                                                                                                                                                                                                  |                             | 10                 | 500                        |                             | 10                 | 500                        | nA   |
|                            | Leakage current<br>Output<br>Clock                                                         | $T_{A} = 25^{\circ}C$ $V_{\phi 2} = V_{\phi 1} = -12V, V_{DD} = -5, V_{OUT} = -5.5V$ $V_{ILC} = -12V$                                                                                                                                |                             | 10<br>10           | 1000<br>1000               |                             | 10<br>10           | 1000<br>1000               | nA   |
| IDD                        | Supply current                                                                             | Continuous operation, $\phi pW = 150ns$ ,<br>f = 1MHz, V <sub>ILC</sub> = -12V, T <sub>A</sub> = 25°C,<br>V <sub>DD</sub> = -5.5V                                                                                                    |                             | 15                 | 35                         |                             | 25                 | 35                         | mA   |
| Cin<br>Cout<br>C¢          | Capacitance<br>Input<br>Output<br>Clock                                                    | $1 MHz, V_{AC} = 25mV p-p$ $V_{I} = V_{CC}$ $V_{O} = V_{CC}$ $V = V_{CC}$                                                                                                                                                            |                             |                    | 5<br>5<br>80               |                             |                    | 5<br>5<br>160              | pF   |



# 512-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (512X1) 1024-BIT RECIRCULATING DYNAMIC SHIFT REGISTER (1024X1)

2524-N • 2525-N

# AC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ , $V_{CC} = 5V \pm 5\%$ , $V_{DD} = -5V \pm 5\%$ , $V_{ILC} = -11V$ ,

#### $T_A = 25^{\circ}$ C, $V_{CC} = 5V \pm 5\%$ , $V_{DD} = -5V \pm 5\%$ , $V_{ILC} = -11V$ , Input rise and fall times = 10ns, Output load = 1 TTL gate

| PARAMETER            |                                  | то       | FROM    |                  | LIMITS |     |      |      |
|----------------------|----------------------------------|----------|---------|------------------|--------|-----|------|------|
|                      |                                  |          |         | TEST CONDITIONS  | Min    | Тур | Max  | UNIT |
| Freq.                | Clock data rep rate <sup>5</sup> |          |         | $W = R = V_{CC}$ | .0005  | 5   | 3    | MHz  |
| t¢PW                 | Clock pulse width                |          |         |                  | 135    | 85  |      | ns   |
| tøD                  | Clock pulse delay                |          |         |                  | 10     |     |      | ns   |
| tR,tF                | Clock pulse transition           |          |         |                  | 10     |     | 1000 | ns   |
|                      | Setup and hold time              |          |         |                  |        |     |      | ns   |
| tow                  | Setup time                       | Clock    | Data in |                  | 70     |     |      |      |
| tDH                  | Hold time                        | Data in  | Clock   |                  | 20     |     |      |      |
| t <sub>A+</sub>      | Delay time                       | Data out | Clock   |                  |        |     | 100  | ns   |
| t <sub>R-</sub> ,tw- | Clock to read or write timing    |          |         |                  | 0      |     |      | ns   |
| t <sub>R-</sub> ,tw+ | Clock to read or write timing    |          |         |                  | 0      |     |      | ns   |

NOTES

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other

condition above those indicated in the operational sections of this specification is not implied. 2. For operating at elevated temperatures the device must be derated based on a +150°C maximum

junction temperature and a thermal resistance of 150°C/W junction to ambient. 3. Guaranteed input levels are stated for worst case conditions including a  $\pm$ 5% variation in V<sub>CC</sub> and a

3. Guaranteed input tevels are stated for worst case conditions including a 15% variation in vCc and a temperature variation of 0°C to +70°C. Actual input requirements with respect to V<sub>CC</sub> are V<sub>H</sub>=V<sub>CC</sub>-1.85V and V<sub>IL</sub> = V<sub>CC</sub> - 4.15V.

- 4.  $V_{OL}$  is a function of the input characteristics of the driven TTL/DTL gate I<sub>OI</sub> and V<sub>CLAMP</sub> and the value of the pull-down resistor (R<sub>L</sub>).
- 5. See Minimum Operating Frequency graph for low limits on data rep. rate.

6. All inputs are protected against static charge.

7. All voltage measurements are referenced to ground.

8. Manufacturer reserving the right to make design and process changes and improvements.

9. Typical values are at +25°C and typical supply voltages.

10. Parameters are valid over operating temperature range unless otherwise specified.

# TIMING DIAGRAM

