

1024-BIT STATIC | 2533

PRELIMINARY SPECIFICATIONS

DESCRIPTION

The Signetics 2533 Static Shift Register consists of enhancement mode P-channel silicon gate MOS devices integrated on a single monolithic chip.

The 1024-bit register is equipped with two data inputs together with a "Stream Select" control to facilitate external recirculation.

The single phase clock input, data input, data output, and stream select control will interface directly with TTL/DTL circuits without external components.

Data is entered when the clock is at a logic "1". Data is shifted when the clock goes low.

FEATURES

- TOTAL TTL COMPATIBILITY
- SINGLE CLOCK LINE
- DC TO 1.5MHz GUARANTEED
- LOW POWER (TYPICALLY 250µW/BIT)
- POWER SUPPLIES +5V AND -12V
- 8-PIN DIP
- STREAM SELECT FOR EASY RECIRCULATION

APPLICATIONS

LOW COST SEQUENTIAL ACCESS MEMORIES LOW COST STATIC BUFFER MEMORIES CRT REFRESH - LINE AND PAGE **DELAY LINES** DRUM MEMORY REPLACEMENT

SPECIAL FEATURES

The three clock phases used in the static register cells are generated internally by an on-chip generator. This clock generator is controlled by a single TTL/DTL 5V logic level input.

Recirculation of data in the 2533 is accomplished by simply jumpering the output back to In 2. The stream select control then becomes a Data Entry/Recirculate Control

BIPOLAR COMPATIBILITY

All inputs of this register, including the clock, can be driven directly by bipolar TTL/DTL integrated circuits without external components. Each input is equipped with an internal pull-up resistor to enhance the "1" level of the TTL driver. The output is push-pull, operating between 0V and +5V, and provides a sink current of 1.6mA for one TTL fanout.

PIN CONFIGURATION: (Top View)

TRUTH TABLE

STRE	STREAM SELECT		
	0	IN 1	
	1	IN 2	

NOTE: "0" - 0V, "1" = +5V

BLOCK DIAGRAM

PART IDENTIFICATION TABLE

PART NUMBER	BIT LENGTH	PACKAGE	
2533 V	1024	8-Pin DIP	

MAXIMUM GUARANTEED RATINGS(1)

 0° C to +70 $^{\circ}$ C Operating Ambient Temperature(2) -65° C to $+150^{\circ}$ C Storage Temperature 535mW @ T_Δ >25°C Power Dissipation (Note 2) Data and Clock Input Voltages +0.3V to -20V and Supply Voltages with Respect to VCC

DC CHARACTERISTICS

 $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C; V_{CC} = +5V \pm 5\%; V_{GG} = -12V \pm 5\% \text{ unless otherwise noted.})$

SYMBOL	TEST	MIN.	TYP.	MAX.	UNITS	CONDITIONS
[†] LI	Input Load Current		10	500	nA	V _{IN} = 0, T _A = 25°C
LC	Clock Leakage Current		10	500	nA	VILC = GND, TA = 25°C
Icc	Power Supply Current		16	30	mA	Continuous Operation
IGG	Power Supply Current		5.0	7.5	mA	F = 1.5MHz
VIL	Input "Low" Voltage			8.0	V	V _{CC} = +5V
V _{IH}	Input "High" Voltage	3.2			V	V _{CC} = +5V
VILC	Clock Input "Low" Voltage			8.0	V	V _{CC} = +5V
VIHC	Clock Input "High" Voltage	3.2		5.3	V	V _{CC} = +5V

NOTES:

- Stresses above those listed under "Maximum Guaranteed Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied.
- For operating at elevated temperatures the device must be derated corresponding to a thermal resistance of 150°C/W junction to ambient.
- 3. All inputs are protected against static charge.
- 4. Parameters are valid over operating temperature range unless specified.
- 5. All voltage measurements are referenced to ground.
- Manufacturer reserves the right to make design and process changes and improvements.
- 7. Typical values are at +25°C and nominal supply voltages.

TIMING DIAGRAM

AC CHARACTERISTICS $~V_{CC}$ = +5V $^{\pm}$ 5%; V_{GG} = -12V $^{\pm}$ 5%; T_{A} = 0° to +70°C

SYMBOL	TEST	MIN.	TYP.	MAX.	UNITS	CONDITIONS
Frequency	Clock & Data Rep Rate	DC	2	1.5	MHz	
$^{t\phi}PW$	Clock Pulse Width	.350		100	us	
^t ₽w	Clock Pulse Width	250		DC	ns	
tr, tf	Clock Pulse Transition			1	μs	,
tDS	Data Write Set-Up Time	50			ns	
^t DH	Data to Clock Hold Time	50			ns	
tA	Clock to Data Out Delay		200	400	ns	I _{OL} = 1.6mA
^t SSH	Stream Select Hold Time	50			ns	<u> </u>
tsss	Stream Select Set-Up Time	80			ns	
C _{IN}	Input Capacitance			5	pF	@ 1 MHz, V _{IN} = V _{CC} V _{AC} = 25 mV p-p
COUT	Output Capacitance			5	pF	@ 1 MHz, $V_{OUT} = V_{CC}$ $V_{AC} = 25mV p-p$
c_ϕ	Clock Capacitance			5	pF	@ 1 MHz, $V_{\phi} = V_{CC}$ $V_{AC} = 25mV p-p$
V_{OL}	Output "Low" Voltage		1	0.4	V	1 TTL load (I=1.6mA)
Vон	Output "High" Voltage	2.4	3.5		\ \ \ \	1 TTL load (I=-100μA)

A.C. TEST SETUP

APPLICATIONS INFORMATION

CHARACTERISTIC CURVES

