

3¹⁸ Series of Encoders

Features

- Operating voltage: 2.4V~12V
- Low power and high noise immunity CMOS technology
- Low standby current
- Three words transmission

Applications

- Burglar alarm system
- Smoke and fire alarm system
- Garage door controllers
- Car door controllers

- Built-in oscillator needs only 5% resistor
- Easy interface with an RF or infrared transmission media
- Minimal external components
- Car alarm system
- Security system
- Cordless telephones
- Other remote control systems

General Description

Selection Table

The 3¹⁸ encoders are a series of CMOS LSIs for remote control system applications. They are capable of encoding 18 bits of information which consists of N address bits and 18–N data bits. Each address/data input is externally trinary programmable if bonded out. It is otherwise set floating internally. Various packages of the 3¹⁶ encoders offer flexible combinations of

programmable address/data to meet various application needs. The programmable address/data is transmitted together with the header bits via an RF or an infrared transmission medium upon receipt of a trigger signal. The capability to select a TE trigger type or a DATA trigger type further enhances the application flexibility of the 3¹⁸ series of encoders.

Function Part No.	Address No.	Address/ Data No.	Data No.	Dummy Code No.	Oscillator	Trigger	Package
HT600	9	5	0	4	RC oscillator	TE	20 DIP/20 SOP
HT640	10	8	0	0	RC oscillator	TE	24 SOP/24 SDIP
HT680	8	4	0	6	RC oscillator	TE	18 DIP
HT6187	9	0	3	6	RC oscillator	D12,D14,D15	18 DIP/20 SOP
HT6207	10	0	4	4	RC oscillator	D12~D15	20 DIP/20 SOP
HT6247	12	0	6	0	RC oscillator	D12~D17	24 SOP/24 SDIP

Note: Address/Data represents addressable pins or data according to the decoder requirements.

1

Block Diagram

TE trigger

HT600/HT640/HT680

DATA trigger HT6187/HT6207/HT6247

Note: The address/data pins are available in various combinations.

Pin Assignment

TE trigger type

9-Address 5-Address	/Data	8-Address 4-Address/E	Data	10-Address 8-Address/Data				
				AD11	1 24			
	_			AD12	2 23			
AD11 🗖 1				AD13	3 22			
AD12 🗖 2	19 🗖 A9	AD11 🗖 1		AD14	4 21	DA8		
AD13 🗖 3	18 🗆 A8	AD12 🗖 2	17 🗖 A9	AD15	5 20			
AD14 🗖 4	17 🗖 A7	AD14 🗖 3	16 🗖 A8	AD16	6 19	DA6		
AD15 🗖 5	16 🗖 A6	AD15 🗖 4	15 🗖 A7	AD17	7 18			
	15 🗖 A4	DOUT 🗖 5	14 🗖 A6		8 17			
TE 🗖 7	14 🗖 A3	TE 🗖 6	13 🗖 A3	TE	9 16	DA3		
OSC2 🗖 8	13 🗖 A2	OSC2 🗖 7	12 🗖 A2	OSC2□	10 15	DA2		
OSC1 🗖 9	12 🗖 A1	OSC1 🗖 8	11 🗖 A1	OSC1	11 14			
VSS 🗖 10	11 🗖 A0	VSS 🗖 9	10 🗖 A0	VSS 🗆	12 13			
	T600 DIP/SOP	HT(– 18 DI	680 P/SOP	HT640 - 24 SOP/SDIP				

 $\mathbf{2}$

DATA trigger type

9-Address 3-Data		9-Address 3-Data		10-Address 4-Data		12-Address 6-Data	
						A11 🗖 1	24 🗆 VDD
						D12 2	23 🗖 A10
		NC 🗖 1	20 🗆 NC	A11 🗖 1	20 VDD	D13 🗖 3	22 🗖 A9
A11 🗖 1	18 🗆 VDD	A11 🗖 2	19 🗖 VDD	D12 🗖 2	19 🗖 A9	D14 🗖 4	21 🗖 A8
D12 🗖 2	17 🗖 A9	D12 🗖 3	18 🗖 A9	D13 🗖 3	18 🗖 A8	D15 🗖 5	20 🗖 A7
D14 🗖 3	16 🗖 A8	D14 🗖 4	17 🗖 A8	D14 🗖 4	17 🗖 A7	D16 🗖 6	19 🗖 A6
D15 🗖 4	15 🗆 A7	D15 🗖 5	16 🗖 A7	D15 🗖 5	16 🗖 A6	D17 🗖 7	18 🗖 A5
DOUT 🗖 5	14 🗖 A6	DOUT 🗖 6	15 🗖 A6		15 🗖 A4		17 🗖 🗛
LED 🗖 6	13 🗖 A3	LED 🗖 7	14 🗖 A3		14 🗖 A3	LED 🗖 9	16 🗖 A3
OSC2 🗖 7	12 🗖 A2	OSC2 🗖 8	13 🗆 A2	osc2□8	13 🗖 A2	OSC2 10	15 🗖 A2
OSC1 🗖 8	11 🗖 A1	OSC1 🗖 9	12 🗖 A1	OSC1 🗖 9	12 🗖 A1	osc1□11	14 🗖 A1
VSS 🗖 9	10 🗖 A0	VSS 🗖 10	11 🗖 A0	VSS 🗖 10	11 A0	VSS 🗖 12	13 🗖 A0
НТ6 - 18		HT6 - 20		HT6 - 20 Dil		HT6 - 24 SO	

Pin Description

Pin Name	I/O	Internal Connection	Description
A0~A11	Ι	TRANSMISSION GATE	Input pins for address A0~A11 setting They can be externally set to VDD, VSS, or left open.
AD10~AD17	Ι	TRANSMISSION GATE	Input pins for address/data (AD10~AD17) setting They can be externally set to VDD, VSS, or left open.
D12~D17	Ι	CMOS IN Pull-low	Input pins for data (D12~D17) setting and transmission enable (active high) They an be externally set to VDD or left open (see Note).
DOUT	0	CMOS OUT	Encoder data serial transmission output
LED	0	NMOS OUT	LED transmission enable indicator
TE	Ι	CMOS IN Pull-low	Transmission enable, active high (see Note).
OSC1	Ι	OSCILLATOR	Oscillator input pin
OSC2	0	OSCILLATOR	Oscillator output pin
VSS	Ι		Negative power supply (GND)
VDD	Ι		Positive power supply

Notes: D12~D17 are data input and transmission enable pins of the HT6187/HT6207/HT6247. TE is the transmission enable pin of the HT600/HT640/HT680.

3

Approximate internal connection circuits

Absolute Maximum Ratings

Supply Voltage0.3V to 13V	Input VoltageV_{SS}–0.3 to V_{DD}+0.3V
Storage Temperature50°C to 125°C	Operating Temperature–20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

 $Ta=25^{\circ}C$

Symbol	Demonstern		Test Conditions	ЪЛ!	—	7.5	TT 34
	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Operating Voltage			2.4	_	12	V
I _{STB} St	Standler Gronnert	3V	0		0.1	1	μA
	Standby Current	12V	Oscillator stops		2	4	μA
т		5V	No load		250	500	μA
I _{DD}	Operating Current	12V	f _{OSC} =100kHz		1200	2400	μA
I_{LED}	LED Sink Current	5V	$V_{LED}=0.5V$	1.5	3		mA
т		5V	V_{OH} =0.9 V_{DD} (Source)	-0.6	-1.2		mA
I _{DOUT}	Output Drive Current	5V	$V_{OL} = 0.1 V_{DD} (Sink)$	0.6	1.2		mA

4

Symbol			Test Conditions	74.	т	7.5	Unit
	Parameter	V _{DD}	Conditions	Min.	Тур.	Max.	
V_{IH}	"H" Input Voltage	_		$0.8 V_{DD}$		VDD	V
V_{IL}	"L" Input Voltage			0		$0.2 V_{DD}$	V
$\mathbf{f}_{\mathrm{OSC}}$	Oscillator Frequency	10V	R_{OSC} =330k Ω		100		kHz
R _{TE}	TE Pull-low Resistance	5V	$V_{TE}=5V$		1.5	3	MΩ
R _{DATA}	D12~D17 Pull-low Resistance	5V	V _{DATA} =5V		1.5	3	MΩ

Functional Description

Operation

The 3^{18} series of encoders begins a three-word transmission cycle upon receipt of a transmission enable (TE for the HT600/HT640/HT680 or D12~D17 for the HT6187/HT6207/HT6247, active high). This cycle will repeat itself as long as the transmission enable (TE or D12~D17) is held high. Once the transmission enable falls low, the encoder output completes its final cycle and then stops as shown below.

Transmission timing

Information word

An information word consists of 4 periods as shown:

Composition of information

 $\mathbf{5}$

Address/data waveform

Each programmable address/data pin can be externally set to one of the following three logic states:

Address/Data bit waveform

The "Open" state data input is interpreted as logic low by the decoders since the decoder output only have two states.

Address/data programming (preset)

The status of each address/data pin can be individually preset to logic "high", "low", or "floating". If a transmission enable signal is applied, the encoder scans and transmits the status of the 18 bits of address/data serially in the order A0 to AD17 for the HT600/HT640/HT680 and A0 to D17 for the HT6187/HT6207/HT6247.

There are some packaging limitations. The 18-pin DIP HT680, for example, offers four external data bits and eight external address bits. The remaining unpackaged bits or dummy codes are treated as floating for A0~AD17 or as pull-low for D12~D17. During an information transmission these bits are still located in their original position. But if the trigger signal is not applied, the chip only consumes a standby current which is less than 1μ A.

The address pins are usually preset to transmit data codes with particular security codes by the DIP switches or PCB wiring, while the data is selected using push buttons or electronic switches.

The following figure shows an application using the HT680:

July 8, 1999

6

Pilot &	A0	A1	A2	A3	A4	A5	A6	A7	A8	A9	AD10	AD11
Sync.	0	Z	0	1	Z	Z	1	\mathbf{Z}	0	0	Z	Z
	AD12	AD13	AD14	AD15	AD16	AD17						
_	Z	Z	Z	1	\mathbf{Z}	Z						

The transmitted information is as shown:

Z: floating

Address/Data sequence

The following provides a table of address/data sequence for various models of the 3¹⁸ series encoders. A correct device should be selected according to the individual address and data requirementss.

D4 NJ-		Address/Data Bits										
Part No.	0~3	4	5	6~9	10	11	12	13	14	15	16	17
HT600	A0~A3	A4		A6~A9		AD11	AD12	AD13	AD14	AD15		
HT640	A0~A3	A4	A5	A6~A9	AD10	AD11	AD12	AD13	AD14	AD15	AD16	AD17
HT680	A0~A3			A6~A9		AD11	AD12		AD14	AD15		
HT6187	A0~A3			A6~A9	_	A11	D12	=	D14	D15	=	=
HT6207	A0~A3	A4		A6~A9		A11	D12	D13	D14	D15	=	=
HT6247	A0~A3	A4	A5	A6~A9	AD10	A11	D12	D13	D14	D15	D16	D17

Notes: "-" is a dummy code which is left "open" and not bonded out.

"=" is a dummy code which is set low and not bonded out.

Transmission enable

For the TE trigger type of encoders, transmission is enabled by applying a high signal to the TE pin. But for the Data trigger type of encoders, it is enabled by applying a high signal to one of the data pins $D12\sim D17$.

7

Flowchart

8

Notes: D12~D17 are transmission enables of the HT6187/HT6207/HT6247. TE is the transmission enable of the HT600/HT640/HT680.

Oscillator frequency vs supply voltage

9

Application Circuits

HT6207

July 8, 1999

10

HT600

11