36-pin QSOP Pkg. (LQ) or 44-pin PLCC Pkg. (ED)

ABSOLUTE MAXIMUM RATINGS

Load Supply Voltages, V _{BAT} , V _{DRAIN} , V _{SW} -0.6 to 60 V
Logic Supply Voltage, V _{DD} 0.3 to 6.5 V
Logic Input/Output, , CSOUT, VDSTH
0.3 to 6.5 V
<i>Pins CSP, CSN, LSS</i> 4 to 6.5 V
<i>Pins SA/SB/SC</i>
<i>Pins GLA/GLB/GLC</i> -4 to 16 V
<i>Pins GHA/GHB/GHC</i> 4 to 75 V
Pins CA/CB/CC
Package Thermal Impedance (at $T_A = +25^{\circ}C$) Θ_{JA} (LQ)
Operating Ambient Temperature Range,
T _A 40 °C to +135 °C
Operating Junction Temperature Range,
T _J 40 °C to +150 °C
Storage Temperature Range,

* Using JEDEC Hi-K board.

AUTOMOTIVE POWER MOSFET CONTROLLER

The A3925 is designed for 42-volt automotive applications that require high-power motors. The A3925 provides six, high current, gate drive outputs capable of driving a wide range of power, N-channel MOSFETs.

A requirement of automotive systems is steady operation over a varying battery input range. Bootstrap capacitors are utilized to provide the above battery supply voltage required for N-channel FETs.

Direct control of each gate output is possible via 6 TTL compatible inputs. A differential amplifier with two Sample/Hold outputs is integrated to allow accurate measurement of the low-side current in a three-phase bridge.

Diagnostic outputs can be continuously monitored to protect the driver from short-to-battery, short-to-supply, bridge-open, all under-voltage conditions, and Thermal Shutdown.

FEATURES

- Drives Wide Range of N-ch MOSFET's in 3-phase bridges
- Bootstrap circuits for high-side gate drivers
- Two, Sample/Hold Current Monitor Outputs
- Two, Diagnostic Fault Outputs
- Motor Lead Short-to-Battery, Short-to-Ground, and Bridge-open Protection
- Under-voltage Protection on all voltages
- -40°C to 135°C, T_A Operation
- Thermal Shutdown

Page 1 04/01/03

Page 2 0

Pin Descriptions

AHI/BHI/CHI. Direct control of high-side gate outputs GHA/GHB/GHC. Logic "1" drives the gate "on". Logic "0" pulls the gate down, turning off the external power MOSFET. Internally pulled down when pin is open.

ALO/BLO/CLO. Direct control of low-side gate outputs GLA/GLB/GLC. Logic "1" drives the gate "on". Logic "0" pulls the gate down, turning off the external power MOSFET. Internally pulled down when pin is open.

CA/CB/CC. High-side connection for bootstrap capacitor, positive supply for high-side gate drive. The bootstrap capacitor is charged to VREG when the output Sx terminal is Low. When the output swings High, the voltage on this pin rises with the output to provide the boosted gate voltage needed for N-channel power MOSFETs.

CSN. Input for current-sense, differential amplifier, inverting, negative side. Kelvin connection for ground side of current-sense resistor.

CSOUT 1, 2. Sample/hold buffer amplifiers' output voltages proportional to current sensed across an external low-value resistor placed in the ground-side of the power FET bridge.

CSP. Input for current sense differential amplifier, noninverting, positive side. Connected to positive side of sense resistor.

ENABLE. Logic "0" disables the gate control signals and switches off all the gate drivers. Can be used in conjunction with the gate inputs to PWM the load current. Internally pulled down when pin is open.

FUV. Logic "1" means that VBAT or VREG Under-voltage has occurred. If FUV is in Hi-Z State, then a Thermal shutdown or VDD or VDDA Under-voltage has occurred.

FBT. Logic "1" means that VBAT Under-voltage or motor/bridge fault has occurred. If FBT is in Hi-Z State, then a Thermal shutdown or VDD or VDDA Under-voltage has occurred.

GHA/GHB/GHC. High-side gate drive outputs for N-ch MOSFET drivers. External series gate resistors can control slew rate seen at the power driver gate; thereby, controlling the di/dt and dv/dt of Sx outputs.

GLA/GLB/GLC. Low-side gate drive outputs for external, N-ch MOSFET drivers. External series gate resistors can control slew rate

GND. Ground or negative side of all power supplies.

LSS. Low-Side gate driver returns. Connects to the common sources in the low-side of the power MOSFET bridge.

SA/SB/SC. Directly connected to the motor terminals, these pins sense the voltages switched across the load and are connected to the negative side of the bootstrap capacitors. Also, are the negative supply connection for the floating, high-side drivers.

SMPL 1, 2. Sample/Hold control logic inputs. Logic "1" connects internal sense amplifier output to the designated hold capacitor. Logic "0" disconnects internal sense amplifier output from that hold capacitor. Internally pulled down when pin is open.

VBAT. Battery Voltage, positive input and is usually connected to the motor voltage supply.

VDD. Logic Supply, positive side. Nominally, +5 V.

VDDA. Analog Supply, positive side. Nominally, +5 V.

VDRAIN. Kelvin connection for drain-to-source voltage monitor and is connected to high-side drains of MOSFET bridge. High-Z when pin is open and registers as a Short-to-Ground Fault on all motor phases.

VDSTH. A positive, DC level that sets the drain-to-source monitor threshold voltage. Internally pulled down when pin is open.

VREG. High-side, gate-driver supply, nominally, 13.5V.

BSW. Buck regulator output switch.

Page 3 04/01/03

Automotive Power Mosfet Controller

<u>ELECTRICAL CHARACTERISTICS</u> (Unless noted, otherwise: -40°C < Ta < 135°C, -40°C < T_j < 150°C, 18V < V_{BAT} < 60V, 4.75V < V_{DD} < 5.25V, Creg = 10 uF, Lreg = 330 uH, CSOUT load = 1K and 10 pF in series, CSN = gnd. (*) is design info, not tested, but guaranteed by characterization. Typical is sim. at 25°C, Max/Min are sim. over temp. range. Neg. current flows out of designated pin.)

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units	
Power Supplies							
Vdda Analog Supply Current	Idda	All sample and logic inputs = 0 V.			5	mA	
V _{DD} Supply Current	I _{DD}	All logic inputs = 0 V.			5.2	mA	
V _{BAT} Supply Current	I _{BAT}	All logic inputs = 0 V.			3	mA	
VREG Avg Output Voltage	V_{REG}	0 < Ireg < 40 mA,	13	13.6	14.2	V	
VREG Output Ripple *	Vreg	lreg=40 mA, Rlreg=0.75ohm, Rcreg=0.25ohm	-	60	-	mV/pp	
Switch ON Resistance	Rbkon	lbk = 80 mA		8.2		Ω	
Peak Switch Currents	lbk			160		mA	
Gate Drive Avg. Supply Current *	I _{REG}	No external DC load at Vreg.			40	mA	
Off-time	Toff	lreg = 40 mA.	2.5	3.5	4.5	uS	
Start-up Time (to 10% of final Vreg) *	Tstartup	From VbatUV . All logic inputs = 0			2.5	mS	
Control Logic							
Logic Input Voltages	V _{IN} (1)	Minimum high level input for logical "one".	2.0	_	-	V	
	V _{IN} (0)	Maximum low level input for logical "zero".	-	_	.8	V	
Logic Input Currents	I _{IN} (1)	$V_{\rm IN} = V_{\rm DD}$	I		500	μA	
	I _{IN} (0)	$V_{IN} = 0.8 V$	100			μA	
Input Hysteresis	V_{HYS}		100		300	mV	
Logic Output High Voltage	V _{OH}	Ι _{ΟΗ} = -800μΑ	V _{DD} 8			V	
Logic Output Low Voltage	V _{OL}	I _{OL} = 1.6mA			.4	V	

Page 4 04/01/03

Automotive Power Mosfet Controller

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Gate Drives, GHx, GLx (internal S		r upper switch stages)				
Output HIGH Voltage	V _{DSL} (HI)	GHx: I _{xU} = -10 mA, Vsx= -Vd	V _{REG} - 2.26		V_{REG} +Vd	V
		GLx: I _{xU} = -10 mA, VIss=0	$V_{REG} - 0.26$		V_{REG}	V
Source Current (pulsed)	Δ lxu	V_{SDU} = 10 V, Tj = 25 °C, between phases		140		mA
	Ixu	V _{SDU} = 10 V, Tj = 25 °C		1.4		А
		V _{SDU} = 10 V, Tj = 135 °C	800			mA
Source ON Resistance	R _{SDU} (ON)	I _{xU} = -150 mA, Tj = 25 °C	2		8	Ω
		I _{x∪} = -150 mA, Tj = 135 °C	5		13	Ω
Source Load Rise-time (20 – 80%)	Trise	Measure Vdsl, Cload = 3300 pF.		60		nS
Gate Drives, GHx, GLx (internal S	SINK or low	ver switch stages)				
Sink Current (pulsed)	Δ Ixl	V_{DSL} = 10 V, Tj = 25 °C, between phases		160		mA
	Ixi	V _{DSL} = 10 V, Tj = 25 °C		1.6		А
		V _{DSL} = 10 V, Tj = 135 ° C	1.0			А
Sink ON Resistance	R _{DSL} (ON)	I _{xL} = +150 mA, Tj = 25 °C	1		3	Ω
		I _{xL} = +150 mA, Tj = 135 ° C	1.5		4	Ω
Sink Load Fall-time (80 – 20%)	Tfall	Measure Vdsl. Cload = 3300 pF		40		nS
Gate Drives, GHx, GLx (General)						
Bootstrap Diode Forward Voltage	V _{DBOOT}	I _{DBOOT} = 10 mA	0.8		2	V
	00001	$I_{\text{DBOOT}} = 100 \text{ mA}$	1.5		2.3	V
Bootstrap Diode Resistance	R _{DBOOT}	$R_{\rm D}(100 {\rm mA}) = [V_{\rm D} (150) - V_{\rm D} (50]/100$	2.5		7.5	Ω
Bootstrap Diode Current Limit	I _{LIM}	$[V_{\text{REG}} - V_{\text{CX}}] = 3V$	-150			mA
	Livi	$[V_{REG} - V_{CX}] = 12V$			-1150	mA
Bootstrap Quiescent Current	I _{cx}	$GHx = ON, V_{cx} = 75 V, Vbat, Vsx=60V$			30	uA
Bootstrap Refresh Time *	t _{REFRESH}	V_{SX} = LOW to guarantee ΔV =+0.5V refresh of 0.47 uF Boot Cap at Vcx – Vsx= +10 V.	2.0		uS	
Propagation Delay, Logic only	t _{PROP}	Logic input to unloaded GHx, GLx.			150	nS
Prop Delay Differences, Logic only	t _{PROP}	Grouped by rising and falling edge transitions.			25	nS
Dead Time (Shoot-through Prevention)	t _{DEAD}	Between GHx, GLx transitions of same phase	50		150	nS

 $\underline{Notes}: \quad \text{For } \boldsymbol{GH_X}: \ V_{SDU} = V_{CX} - V_{GHX} \ . \ V_{DSL} = V_{GHX} - V_{SX} \ . \quad V_{\text{DSL}}(\text{HI}) = V_{CX} - V_{SDU} - V_{SX} \ .$

For GL_X: $V_{SDU} = V_{REG} - V_{GLX}$. $V_{DSL} = V_{GLX} - V_{LSS}$. $V_{DSL}(HI) = V_{REG} - V_{SDU} - V_{LSS}$.

Automotive Power Mosfet Controller

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units	
Sense Amplifier (with one S/H Enabled)							
Input Bias Current	I _{BIAS}	CSP=CSN=0 V.	-360		-210	uA	
Input Offset Current	I _{os}	CSP=CSN=0 V.	-35		35	uA	
Input Resistance	R _{IN}	CSP with respect to gnd.		80		kΩ	
		CSN with respect to gnd.		4		kΩ	
Diff. Input Operating Voltage	V _{ID}	V_{ID} = CSP – CSN1.3V < CSP,N < 4V.	0		+200	mV	
Output Offset Voltage	Vosout	CSP=CSN=0V	77	250	400	mV	
Output Offset Voltage Drift *	V _{OSOUT}	CSP=CSN=0V		100		uV/°C	
Input Common Mode Oper. Range	V _{CM}	CSP = CSN	-1.5		4	V	
Voltage Gain	A _V	V_{ID} = 40mV to 175mV, V_{CM} in range.	18.6	19.0	19.4	V/V	
Low Output Voltage Error	Verr	Vid = 0 to 40mV, Vout = 19.0*Vid + Vos + Verr	-20		+20	mV	
DC Common Mode Gain	A _{CM}	CSP = CSN = 200mV			-28	dB	
Source Resistance	R _{OUT}	V _{CSOUT} = 2.0 V			10	Ω	
Output Dynamic Range	V _{CSOUT}	I _{CSOUT} = -100uA at top, 100uA at bottom.	0.1		V _{DA} 3	V	
Output Current (Magn.), Sink	lcssink	V _{CSOUT} = 2.0V	10			mA	
Output Current,(Magn.), Source	Icssource	V _{CSOUT} = 2.0 V	2			mA	
VDD, VDDA Supply Ripple Gains	PSRG	CSP=CSN=GND. Freq = 0 to 1 MHz			-20	dB	
VREG Supply Ripple Gain	PSRG	CSP=CSN=GND. Freq = 0 to 300 kHz			-45	dB	
Small Signal 3-dB Bandwidth *	f _{3db}	Vid = 10mv/pp		1.6		MHz	
Settling Time (to within 10%)	Tsettle	CSOUT = 1.0V, set 1V/pp output sq.wave.			400	nS	
AC Common Mode Gain	Acm	Vcm = 250 mV/pp, Freq = 0 to 1 MHz			-28	dB	
CM Recovery Time (to within settle)	Treccm	Vcm = +4.1V to 0V step. Settle < 100 mV/pp			1	uS	
Output Slew Rate	SR	Vid = 0V to +175mV, step. Meas. 10/90% pts.	10			V/us	
DM Recovery Time (to within 10%)	Trecid	Vid = +250mV to 0V step. [Neg. Slew incl.]			400	nS	
Sample and Hold	Sample and Hold						
Sample ON Time (to within 2 % of final value)	Tsmplon	Discharge hold (Vid=0), SMPL=OFF, sense amp to 3.0V (internally), switch SMPL=ON.			325	nS	
Sample OFF Time (to within 2% of final value)	Tsmploff	With SMPL=ON, -1V/uS ramp at CSOUT. At CSOUT ~ 3.0V switch SMPL=OFF.			200	nS	
Output Differences (Offsets)	Vosbuf	Vid= 0,40mV,175mV. Toggle @SMPL= 0/1/0.	-20		+20	mV	
Voltage Sag	Vcsoutsg	Rate of decay of CSOUT, SMPL = 0	-2.5		+2.5	mV/mS	

Page 6

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Fault Logic						
VDD Under-voltage	V _{UVDD}	Decreasing V_{DD}	3.8		4.3	V
VDD Under-voltage Hysteresis	V _{HYSDD}	$V_{UVDD_{RECOVERY}} = V_{UVDD} + V_{HYSDD}$	100		300	mV
VBAT Under-voltage	V _{UVBAT}	Decreasing V_{BAT}	14		16	V
VBAT Under-voltage Hysteresis	V _{HYSUVBAT}	Increasing VBAT, $V_{\text{RECOVERY}} = V_{\text{UVBAT}} + V_{\text{HYSUVBAT}}$.8		1.6	V
VREG Under-voltage	V _{UVREG}	Decreasing VREG	9.5		10.5	V
VREG Under-voltage Hysteresis	V _{HYSUVREG}	Increasing VREG, $V_{\text{RECOVERY}} = V_{\text{UVREG}} + V_{\text{HYSUVREG}}$	50		200	mV
VDSTH Input Range *	V _{DSTH}		0.5		3	V
VDSTH Input Current	I _{DSTH}		50		110	uA
Short-to-Ground Threshold	V_{STG}	With a High-side driver "on", as V_{SX} decreases, V_{DRAIN} - V_{SX} > V_{STG} , causes a fault.	V _{DSTH} -0.3		V _{DSTH} + 0.2	V
Short-to-Battery Threshold	V _{STB}	With a Low-side driver "on", as V_{SX} increases, V_{SX} - V_{LSS} > V_{STB} , causes a fault.	V _{DSTH} -0.3		V _{DSTH} + 0.2	V
V _{DRAIN} /Open Bridge Operating Range	Vdrain		-0.3		V _{BAT} +2	V
V _{DRAIN} /Open Bridge Leakage Curr.	I (V _{drain})		0	0.5	1.0	mA
V _{DRAIN} /Open Bridge Threshold Volt.	V _{BDGOTH}	If $V_{DRAIN} < V_{BDGOTH}$ then a Bridge fault occurs.	1		3	V
Thermal Shutdown Temp.	TJ		160	170	180	°C
Thermal Shutdown Hysteresis	$\Delta T_{\rm J}$		7	10	13	°C

Page 8 04

3925 SAMPLE / HOLD WAVEFORMS

Functional Description

Motor Lead Protection. A fault detection circuit monitors the voltage across the drain to source of the external MOSFETs. A fault is asserted "High" on the output pin, FBT, if the voltage across the drain to source of any MOSFET that is instructed to turn on is greater than the voltage applied to the V_{DSTH} input terminal. The low-side, drain-source monitor uses the LSS pin, rather than V_{DRAIN} pin, in comparing against the V_{DSTH} voltage. The V_{DSTH} voltage is set by a resistor divider to V_{DD} .

Pin V_{DRAIN} is intended to be a Kelvin connection for the high-side, drain-source monitor circuit. Voltage drops across the power bus are eliminated by connecting a private PCB trace from the V_{DRAIN} pin to the common drains of the MOSFET bridge. This allows improved accuracy in setting the V_{DSTH} threshold voltage.

Fault Outputs. Transient faults on any of the fault outputs may occur during switching but will not disable the gate drive outputs. External circuitry or controller logic must determine if the faults represent a hazardous condition.

FBT. The FBT pin will go active "High" if a Vbat Undervoltage occurred or, if a gate is commanded to turn ON, then a Motor Lead Short-to-Ground, Motor Lead Short-to-Supply (or Battery) or Bridge (or V_{DRAIN}) Open Fault occurred.. This fault flag indicates a motor/bridge fault, primarily, but with FUV asserted means a Vbat Under-voltage occurred and the part has entered Shutdown. Along with the FUV, Hi-Z state indictes that there is an over-temperature condition (TSD) or the VDD or VDDA are under-voltage and the part has entered Shutdown.

FUV. The FUV pin will go active "High" if a V_{BAT} Undervoltage or Vreg Under-voltage fault occurred. This fault flag indicates a Voltage Fault, primarily, but with FBT asserted means a Vbat Under-voltage occurred and the part has entered Shutdown. Along with the FBT, a Hi-Z state indictes there is an over-temperature condition (TSD) or the

VDD or VDDA are under-voltage and the part has entered Shutdown.

Shutdown. If a fault occurs because of excessive junction temperature or under-voltage on Vdd, Vdda, or Vbat, all gate driver outputs are driven "Low" (COAST mode) until the fault condition is removed. In addition, the buck regulator supply switch is turned "off" until the other under-voltages and the junction temperature recover.

Current Sensing. A current sense amplifier is provided to allow system monitoring of the FET bridge load current through two, selectable, sample/hold unity gain buffer output stages. The differential amplifier inputs are Kelvin connected across a low-value sense resistor or current shunt, R_{SENSE}. The output voltage is:

 $V_{CSOUT} = (I_{LOAD} * A_V * R_{SENSE}) + V_{OS}$

where V_{OS} is output voltage calibrated at zero load current. A_V = Differential gain of sense amplifier.

VREG Regulator. A PFM Buck Regulator driven from the Vbat with internal current limit control and min.off-time, Toff. When the output voltage, Vreg, is below target, the buck switch turns on connecting Vbat to Vsw and forcing current into Lreg until it reaches the internal switch current limit value, where it turns off. Inductor current completely decays through the external, recirculation diode during the fixed Off Time. The switching cycle frequency increases as the output load current or the Vbat voltage increases.

Page 10 04

Input Logic.

Enable	(x)LO	(x)HI	GL(x)	GH(x)	Mode of Operation
0	Х	Х	0	0	All gate drive outputs Low
1	0	0	0	0	All gate drive outputs Low
1	0	1	0	1	High Side On
1	1	0	1	0	Low Side On
1	1	1	0	0	All gate drive outputs Low (XOR feature)

Fault Responses.

FAULT MODE	ENABLE	FBT	FUV	VREG REG.	GH _X	GL _X
No Fault	Х	0	0	ON	-	-
Short-to-Battery	1*	1	0	ON	-	-
Short-to-Ground	1*	1	0	ON	-	-
Bridge (V _{DRAIN}) Fault	1*	1	0	ON	-	-
V _{REG} Under-voltage	Х	0	1	ON	-	-
V _{DD} or V _{DDA} Under-voltage or Thermal Shutdown !	Х	Z	Z	OFF	0	0
V _{BAT} Under-voltage !	Х	1	1	OFF	0	0

<u>Notes:</u> FUV = VregUV + VbatUV. FBT = EN[GHx(SG + BF) + GLx(SB)] + VbatUV.

Z = VddUV + VddaUV + TSD.

x = "little x "indicates A, B, or C phase.

X = "Capital X " indicates a "don't care".

- = Depends on (x)LO, (x)HI inputs and ENABLE.

Z = Tri-stated output.

 1^* = Short-to-Battery can only be detected when the corresponding GL_X = 1. Similarly, Short-to-Ground can only be

detected when the corresponding $GH_X = 1$. Bridge Fault appears as a Short-to-Ground fault on all phases. These faults are not detected when ENABLE = 0.

! = These faults are not only reported but action is taken by the internal logic to protect this IC (shuts off the Vreg Regulator) and coast the motor.

Page 11 04/01/03

Automotive Power Mosfet Controller

Terminal Lists for 36-pin QSOP (LQ) and 44-pin PLCC (ED)

36LQ, Pin #	44ED, Pin #	Pin Name	Pin Description
1	15	CSP	Current sense input, positive-side
2	16	VDSTH	DC Input, Drain-to-Source Monitor Threshold Voltage
3	17	CC	Bootstrap C Cap
4	18	SC	Motor Phase C Input
5	19	GHC	High-Side C Gate Drive Output
6	20	SB	Motor Phase B Input
7	21	GHB	High-Side B Gate Drive Output
8	24	CB	Bootstrap B Cap
9	25	SA	Motor Phase A Input
10	26	GHA	High-Side A Gate Drive Output
11	27	CA	Bootstrap A Cap
12	28	GLC	Low-Side C Gate Drive Output
13	29	GLB	Low Side B Gate Drive Output
14	30	GLA	Low-Side A Gate Drive Output
15	31	LSS	Low-Side, Gate Drive Source returns
16	32	VREG	Buck Reg./Gate Drive Supply Output, Positive
17	33	VDRAIN	Kelvin Connection to MOSFET high-side drains
18	-	GND	GROUND, Supply Returns, Negative
19	36	BSW	Buck Regulator Switch Output
20	37	VBAT	Battery Supply Connection, Positive
21	38	VDD	Logic Supply, Positive
22	39	FUV	Under-voltage Fault
23	40	FBT	Bridge Terminal Fault
24	41	ALO	Gate Control Signal, A, Low-side
25	42	AHI	Gate Control Signal, A, High-side
26	43	BHI	Gate Control Signal, B, High-side
27	44	BLO	Gate Control Signal, B, Low-side
28	3	CLO	Gate Control Signal, C, Low-side
29	4	CHI	Gate Control Signal, C, High-side
30	5	ENABLE	Gate Output Enable
31	6	SMPL2	Sample Gate for CSOUT2
32	7	CSOUT2	Current sense amplifier output after S/H 2
33	8	SMPL1	Sample Gate for CSOUT1
-	9	TP	Test Point for manufacturing test use, only.
34	10	CSOUT1	Current sense amplifier output after S/H 1
35	13	VDDA	Analog Supply. Positive
36	14	CSN	Current sense input, negative-side
-	1,2,11,12,22, 23,34,35	GND	GROUND, Supply Returns, Negative. Heat path, die attach, connected to chip GND at pin 34.

Page 12 04/01/03