54/74176 PRESETTABLE DECADE COUNTER

CONNECTION DIAGRAM PINOUT A

LOGIC SYMBOL

10 3 11

PL P0 P1 P2 P3

MR Q0 Q1 Q2 Q3

CP₀

CP1

13 5 9 2 12

 $V_{CC} = Pin 14$ GND = Pin 7

PL 1

Q2 2

P₂

Po

Q0 5

CP1 6

GND 7

14 Vcc

13 MR

12 Q3

11 P3

10 P1

9 Q1

8 CPo

DESCRIPTION — The '176 is a presettable decade ripple counter partitioned into divide-by-two and divide-by-five sections, with separate clock inputs for the two sections. It can be connected to operate either in a BCD (8421) sequence or in a bi-quinary sequence producing a 50% duty cycle output. A LOW signal on the Master Reset (MR) input overrides all other inputs and forces the Q outputs LOW. A LOW signal on the Parallel Load (PL) input causes the Q outputs to assume the state of their respective Parallel Data(Pn) inputs, regardless of the clock. In the counting mode, state changes are initiated by the falling edge of the clock.

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	Ουτ	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ $T_A = -55^{\circ} C \text{ to } +125^{\circ} C$	TYPE
Plastic DIP (P)	A	74176PC		9 A
Ceramic DIP (D)	A	74176DC	54176DM	6A
Flatpak (F)	A	74176FC	54176FM	31

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	
CP0 CP1 MR	÷2 Section Clock Input (Active Falling Edge)	2.0/3.0	
CP1	÷5 Section Clock Input (Active Falling Edge)	3.0/3.0	
MR	Asynchronous Master Reset Input (Active LOW)	2.0/2.0	
P0 — P3 PL	Parallel Data Inputs	1.0/1.0	
PL	Asynchronous Parallel Load Input (Active LOW)	1.0/1.0	
Q0 — Q3	Flip-flop Outputs*	20/10	

*Q0 is guaranteed to drive CP1 in addition to the full rated load.

FUNCTIONAL DESCRIPTION — The '176 is an asynchronously presettable decade ripple counter partitioned into divide-by-two and divide-by-five sections. In the counting modes, state changes are initiated by the HIGHto-LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The \overline{CP}_0 input serves the Q₀ flip-flop while the \overline{CP}_1 input serves the divide-by-five section. The Q₀ output is designed and specified to drive the rated fan-out plus the \overline{CP}_1 input.

The '176 can be connected up to operate in two different count sequences. With the input frequency connected to \overrightarrow{CP}_0 and with Q_0 driving \overrightarrow{CP}_1 , the circuit counts in the BCD (8421) sequence. With the input frequency connected to \overrightarrow{CP}_1 and Q_3 driving \overrightarrow{CP}_0 , Q_0 becomes the low frequency output and has a 50% duty cycle waveform. Note that the maximum counting rate is reduced in the latter (bi-quinary) configuration because of the interstage gating delay within the divide-by-five section.

The '176 has an asynchronous active LOW Master Reset input (\overline{MR}) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (\overline{PL}) overrides the clock inputs and loads the data from Parallel Data ($P_0 - P_3$) inputs into flip-flops. While \overline{PL} is LOW, the counters act as transparent latches and any change in the P_n inputs will be reflected in the outputs. In order for the intended parallel data to be entered and stored, the recommended setup and hold times with respect to the rising edge of \overline{PL} should be observed.

LOGIC DIAGRAM

÷ 5 STATE DIAGRAM

BCD STATE DIAGRAM

MODE SELECT TABLE

	INPL	JTS	RESPONSE
MR	PL	CP	
L H H	X L H	x x T	Q _n forced LOW Pn→ Qn Count Up

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54	1/74	UNITS	CONDITIONS
		Min	Max		
lcc	Power Supply Current		48	mA	Vcc = Max All inputs = Gnd

SYMBOL		54/74 CL = 15 pF RL = 400 Ω			
	PARAMETER			UNITS	CONDITIONS
		Min	Max	7	
f _{max}	Maximum Count Frequency at CP0	35		MHz	Figs. 3-1, 3-9
f _{max}	Maximum Count Frequency at CP1	17.5		MHz	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₀ to Q ₀		13 17	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP1 to Q1		17 26	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP1 to Q2	-	41 51	ns	Figs. 3-1, 3-9
tPLH tPHL	Propagation Delay CP ₁ to Q ₃ for '176		20 26	ns	Figs. 3-1, 3-9
tplh tphl	Propagation Delay CP1 to Q3 for '177		66 75	ns	Figs. 3-1, 3-9
tplh tphl	Propagation Delay P_n to Q_n		29 46	ns	Figs. 3-1, 3-5
tPLH tPHL	Propagation Delay PL to Q _n		43 48	ns	Figs. 3-1, 3-16
tрнL	Propagation Delay MR to Qn		48	ns	Figs. 3-1, 3-16

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}, \text{ T}_{A} = +25^{\circ} \text{ C}$

SYMBOL	PARAMETER	54/74		UNITS	CONDITIONS
		Min	Max		
t _s (H)	Setup Time HIGH P_n to PL	15		ns	Fig. 3-13
t _h (H)	Hold Time HIGH Pn to PL	0		ns	Fig. 3-13
t _s (L)	Setup Time LOW Pn to PL	20		ns	Fig. 3-13
t _h (L)	Hold Time LOW Pn to PL	0		ns	Fig. 3-13
t _w (H)	CP0 Pulse Width HIGH	14		ns	Fig. 3-9
t _w (H)	CP1 Pulse Width HIGH	28		ns	Fig. 3-9
t _w (L)	PL Pulse Width LOW	25		ns	Fig. 3-16
t _w (L)	MR Pulse Width LOW	20		ns	Fig. 3-16
t _{rec}	Recovery Time MR or PL to CPn	25		ns	Fig. 3-16