54/7446A • 54/7447A 54LS/74LS47

BCD TO 7-SEGMENT DECODER/DRIVER

DESCRIPTION — The '46A, '47A and 'LS47 accept four lines of BCD (8421) input data, generate their complements internally and decode the data with seven AND/OR gates having open-collector outputs to drive indicator segments directly. Each segment output is guaranteed to sink 40 mA (24 mA for the 'LS47) in the ON (LOW) state and withstand 15 V (30 V for the '46A) in the OFF (HIGH) state with a maximum leakage current of 250 μA. Auxiliary inputs provide blanking, lamp test and cascadable zero-suppression fuctions. Also see the 'LS247 data sheet.

- OPEN-COLLECTOR OUTPUTS
- DRIVE INDICATOR SEGMENTS DIRECTLY
- CASCADABLE ZERO-SUPPRESSION CAPABILITY
- LAMP TEST INPUT

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG	
PKGS OUT		$V_{CC} = +5.0 \text{ V } \pm 5\%,$ $T_A = 0^{\circ} \text{ C to } +70^{\circ} \text{ C}$	$V_{CC} = +5.0 \text{ V} \pm 10\%,$ $T_A = -55^{\circ}\text{ C to} + 125^{\circ}\text{ C}$	TYPE	
Plastic DIP (P)	Α	7446APC, 7447APC 74LS47PC		9B	
Ceramic DIP (D)	A	7446ADC, 7447ADC 74LS47DC	5446ADM, 5447ADM 54LS47DM	7B	
Flatpak (F)	A	7446AFC, 7447AFC 74LS47FC	5446AFM, 5447AFM 54LS47FM	4L	

CONNECTION DIAGRAMPINOUT A

LOGIC SYMBOL

V_{CC} = Pin 16 GND = Pin 8

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW		
A ₀ — A ₃	BCD Inputs	1.0/1.0	0.5/0.25		
A ₀ — A ₃ RBI	Ripple Blanking Input (Active LOW)	1.0/1.0	0.5/0.25		
LT	Lamp Test Input (Active LOW)	1.0/1.0	0.5/0.25		
BI/RBO	Blanking Input (Active LOW) or	-/2.5	-/0.75		
	Ripple Blanking Output (Active LOW)	5.0/5.0	1.25/2.0		
	-		(1.0)		
$\bar{a} - \bar{g}$	Segment Outputs (Active LOW)	OC*/25	OC*/15		
-			(7.5)		

*OC - Open Collector

FUNCTIONAL DESCRIPTION — The '46A, '47A and 'LS47 decode the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the RBI blanks the display and causes a multidigit display. For example, by grounding the RBI of the highest order decoder and connecting its BI/RBO to RBI of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding RBI of the lowest order decoder and connecting its BI/RBO to RBI of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, ie: by driving RBI of an intermediate decoder from an OR gate whose inputs are BI/RBO of the next highest and lowest order decoders. BI/RBO also serves as an unconditional blanking input. The internal NAND gate that generates the RBO signal has a resistive pull-up, as opposed to a totem pole, and thus BI/RBO can be forced LOW by enternal means, using wired-collector logic. A LOW signal thus applied to BI/RBO turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to LT turns on all segment outputs, provided that BI/RBO is not forced LOW.

LOGIC DIAGRAM

NUMERICAL DESIGNATIONS — RESULTANT DISPLAYS

TRUTH TABLE

	INPUTS							OUTPUTS							
DECIMAL OR FUNCTION	ĹΤ	RBI	Аз	A ₂	A ₁	Ao	BI/RBO	- a	Б	-	- d	- - e	Ŧ	- g	NOTE
	_					. 1		Č.	- -	- -	<u> </u>	÷	<u> </u>		11012
0	Н	Н	L	L	L	L	Н	L	L	L	L	L	L	Н	1
1 1	н	X	L	Ļ	L	н	Н	Н	L	L	Н	Н	Н	Н	1
2	H	X	L	L	Н	L	Н	L	L	Н	L	L	Н	L	
3	Н	Х	L	L	Н	н	, н	L	L	L	L	Н	Н	L	
4	н	х	L	н	L	L	н	н	L	L	Н	Н	L	L	
5	н	х	L	Н	L	н	н	L	Н	L	L	Н	L	L	
6 7	н	X	L	Н	Н	L	н	н	Н	L	L	L	L	L	
7	н	х	L	Н	Н	н	н	L	L	L	Н	Н	Н	Н	1X1
8	н	Х	Н	L	L	L	н	L	L	L	L	L	L	L	
9	н	х	н	L	L	н	н	L	L	L	Н	Н	L	L	
10	н	Х	Н	L	Н	L	н	Н	Н	Н	L	L	Н	L	1
11	н	Х	Н	L	Н	н	н	Н	Н	L	L	Н	Н	L	
12	н	Х	Н	Н	L	L	н	Н	L	Н	Н	Н	L	L	
13	Н	Х	Н	Н	L	н	н	L	Н	Н	L	Н	L	L	
14	н	х	н	Н	Н	L	н	н	н	н	L	L	L	L	
15	н	Х	Н	Н	Н	н	н	Н	Н	Н	Н	Н	Н	Н	
15 BI	x	Х	Х	X	X	Х	L	Н	Н	Н	Н	Н	Н	Н	2
RBI	н	L	L	L	L	L	L	Н	Н	Н	Н	H	. H	Н	3
LT	L	Х	Х	Х	X	Х	Н	L	L	L	L	L	L	L	4

- NOTES:
 (1) BI/RBO is wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO). The blanking out(BI) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking or a decimal 0 is not desired. X = input may be HIGH or LOW.
- (2) When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition.
- (3) When ripple-blanking input (RBI) and inputs A₀, A₁, A₂ and A₃ are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBO) goes to a LOW level (response condition).
- (4) When the blanking input/ripple-blanking output (BI/RBO) is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS			
31MBOL	FANAMETER	raname i en			Min	Max	014113	CONDITIONS		
Юн	Output HIGH Current	'46		250			μΑ	V _{OH} = 30 V	V _{CC} = Max	
.011	OFF State at $\overline{a} - \overline{g}$	'47		250		250	"	V _{OH} = 15 V		
los	Output Short Circuit Current at BI/RBO			-4.0	-0.3	-2.0	mA	V _{CC} = Max		
lcc	Power Supply Current	XM		85 103		13 13	mA	V _{CC} = Max		

AC CHARACTERISTICS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$ (See Section 3 for waveforms and load configurations)

		54/74		54/74LS				
SYMBOL	•		C _L = 15 pF R _L = 120 Ω			UNITS	CONDITIONS	
	4 1	Min	Max	Min	Max			
tpLH tpHL	Propagation Delay A _n to a — g		100 100		100 100	ns	Figs. 3-2, 3-20	
tPLH tPHL	Propagation Delay RBI to a — f		100 100		100 100	ns	Figs. 3-2, 3-4 LT = HIGH, A ₀ - A ₃ = LOW	