User Manual — 56800E Family IEEE-754 Compliant Floating-Point Library

1.1 Introduction

RCSLFP 1.0 —Rev. 0.4

Section 1. User Guide

This document presents an implementation of floating-point arithmetic
as described in [1]. The following floating-point routines for the 56800E
device family are implemented (see also [1] and [2] for detailed
description of their functionality):

1.

Basic floating-point operations: addition, subtraction,
multiplication, division

Conversion to and from integer (16-bit and 32-bit) and
floating-point format, both round-to-nearest-even and toward-zero
versions

Comparison functions

Rounding functions: floor, ceil, round, trunc, rint
Function for controlling floating-point state as defined in [2]:

getround, setround, testexcept, getexceptflag,
setexceptflag, clearexcept

Floating-point functions are provided in the form of libraries and source
code, both C and assembly.

The implementation is prepared for use with the CodeWarrior compiler.

The release contents are divided into a few folders as follows:

- . -\examples - contains operational examples of use of the
software

- - -\l1ib - contains floating-point libraries for immediate use

- - -\proj - contains CodeWarrior project needed for re-build of
all libraries

- - -\src - contains all source files

56800E Family IEEE-754 Compliant Floating-Point Library

Freescale

User Guide 1



The implementation demonstrates a good balance between functionality
and performance, and for this reason does not strictly follow the
floating-point standard described in [1]. In particular, the implementation
provides a few library variants, each of them differing in compliance level
to the standard [1].

The different library variants together with supported floating-point
features are described in the table Table 1-1

Table 1-1 Floating-Point Library Variants

Library Variants (library tag is shown)

Features fast balan advan
_ unspecified/ round to directed
Rounding round to nearest .
rounding
zero even
Non-numerical
t t t
values NO NO YES
Floatlng-pomt NO NO NO
state bits
Exception/Traps NO NO NO
Sub-normals YES YES YES

T feature customizable, can be switched on or off depending on
defined assembler macros

Different library variants differ in speed performance. The variant fast is
the fastest, the variant balan is slower, however it exhibits a good
balance between speed, accuracy and functionality. The advan variant
is the slowest one, however offers the highest conformance to the
standard.

Due to defined features of different library variants, some functions may
have limited functionality.

For example the directed float-float rounding function (rint) rounds
always toward zero in the fast variant of the library.

Another example - the fast variant does not support rounding mode in a
consistent way. For addition, subtraction, multiplication and division the

56800E Family IEEE-754 Compliant Floating-Point Library RCSL FP 1.0 — Rev. 0.4

2 User Guide Freescale



NOTE:

1.2 Usage

RCSLFP 1.0 —Rev. 0.4

User Guide
Usage

rounding mode may vary from operation to operation resulting in an error
of 1 ulp. For other operations (floating and integer conversions) the
round-to-zero rounding mode is used (see 1.4.6 Rounding for more
details).

A detailed discussion regarding use of the different floating-point
features imposed by the IEEE-754 standard [1] is beyond the scope of
this document and will not be provided. However, users are reminded
that this subject is non-trivial. It is recommended that users familiarize
themselves with the appropriate literature in order to use all such
features correctly (see [3]).

The floating-point libraries should be used by adding a floating-point
library to a CodeWarrior project. The CodeWarrior linker will link the
project compiled binaries against the added library.

The library files are located in . . .\ li1b folder. The libraries names are
composed as follows:

e Tplib_<[library tag> <memory model>

where:

 Tplib_is alibrary identifier

 <[Ilibrary tag> is one of the library tags as shown in Table 1-1

* <memory model>is memory model as with other CodeWarrior
libraries

An example of how to add a floating-point library to a CodeWarrior
project is shown in Table 1-1. An operational example demonstrating
use of the provided floating-point libraries can be found in the

- - - \examples folder.

The CodeWarrior linker may report warnings about ambiguous symbols
if a floating-point library from the CodeWarrior release is used. If such
behaviour is not acceptable the floating-point library from the
CodeWarrior release should be removed from the project.

To run correctly, the floating-point libraries require the following:

56800E Family IEEE-754 Compliant Floating-Point Library

Freescale

User Guide 3



* Appropriate setting of the OMR register:

— SA =0 - saturation mode bit cleared
— R =0 - convergent rounding is set

* Inclusion of header file: fpieee.h from the.. . .\src directory

Other standard headers may require to be included as well (math.h,
fenv_h, float.h).

smgle.mcp =
|ﬂl lekin_bsalan j .ﬁ *" -_5 1. * H
Fles | Link Dier | Taigats |
Place the w Fie Code | Dais 400 oF
library files in 2 ] cods KA 0+ « oS

here 7 (3 DSPESERO0E sinn suppot 49 Ao+ s

B Ipib_advan_zmim kb
| = A R Y 2
B it badsn smm b s
E Il Lk W b 'S
B Ipibe fact_som kb o'
BB ik ek b

[ ik sdvanbb

EiibibiiEEliEkElE

TH s e, HE.

Figure 1-1 Example of Adding Floating-Point Library to
Codewarrior Project

The floating-point routines contained in the floating-point libraries can be
called in two ways. Firstly, implicitly by the CodeWarrior compiler
through ANSI C arithmetic and cast operators. Secondly, explicitly by
use of the full names of floating-point functions.

The floating-point function names are composed as follows:

* _ rznv_fp<function tag>

* _ rznv_fp<function tag> <lib. tag><nmem nodel >
where:

* _ rznv_Tp -is a unique identifier

« <function tag> -isthe function tag
» <[Iib. tag>-is library tags as shown in Table 1-1

56800E Family IEEE-754 Compliant Floating-Point Library RCSL FP 1.0 — Rev. 0.4

4 User Guide Freescale



RCSLFP 1.0 —Rev. 0.4

User Guide
Usage

<mem. model>-is memory model (_Imm, _smm or nothing)

The function identifiers are specified in the list below:

addf, subf, mulf, divT - addition, subtraction, multiplication,
division

ftos, Ttous, ftol, ftoul - conversion of floating-point number
to respectively signed short, unsigned short, signed long,
unsigned long, toward-zero rounding mode

ftosr, ftousr, ftolr, ftoulr - conversion of floating-point
number to respectively signed short, unsigned short, signed long,
unsigned long, directed rounding mode

stof, ustof, 1tof, ultof - conversion of integer number,
respective signed short, unsigned short, signed long, unsigned
long to floating-point number

gtft, gef, Itf, lef, eqgf, nef - comparisons, respectively
greater, greater equal, lower, lower equal, equal, not equal, the
order of arguments is defined as follows: __rznv_fp<f uncti on
tag>(x,y) = X op Yy, where opis an ANSI operator
corresponding to a comparison function

floorf, ceilf, roundf, truncf, rintf -roundingfunctions,
respectively round down, round up, round to nearest even, round
toward 0, directed rounding (according to set rounding mode)
getround, setround, testexcept, getexceptflag,
setexceptflag, clearexcept - function controlling
floating-point state (see [2]), the standard names ([2]) are
supported too

It should be noticed that creation of symbol names can be customized
as described in 1.3 Advanced Features.

The library user should pay attention to the following comments about
library use.

All functions have been designed to execute as fast as possible in the
presence of normalized number as input arguments. In the case where
sub-normal numbers are supplied, the execution time may be longer. In
any case it should be noted that a frequent appearance of sub-normal
numbers in floating-point computation may indicate that an implemented
algorithm needs some refinement.

56800E Family IEEE-754 Compliant Floating-Point Library

Freescale

User Guide 5



The binaries contained in the provided libraries do not contain symbolic
information and are not suitable for debugging. A user wishing to debug
the floating-point library functions will have to re-build the libraries with
the use of the CodeWarrior project located in the . . . \ pr oj directory.

1.3 Advanced Features

The package provides several advanced features, which can be utilized
in order to customize package functionality to specific needs.

All files containing assembly source code of floating-point functions
include before any other statements two files: fpopt_all.asm and
fpopt_<library tag>.asm, where <library tag> is a library
identifier (on of fast, balan, advan). These files must be accessible
during compilation and are intended to contain some defines (the

DEF INE directive) for conditional compilation.

The following defines may be used:

« CWDFTLIB - the library tag (fast, balan or advan) of a library
variant containing compiler implicit symbols for floating point
operations, if al l is defined, then all library variants will contain
the implicit symbols, if CWDFTL 1B does not contain any of all,
fast, balan or advan, no library variant will contain implicit
compiler symbols. In this case the word none is preferred.

« DFTLIB - the library tag of a library variant containing the default
symbols names (Fast, balan or advan), if al l is defined then
all library variants will contain the default symbols, if DFTL 1B does
not equal to one of: al I, fast, balan oradvan, no library variant
will contain the default symbols names. In this case the word none
is preferred.

«  NONNUM - if defined, will cause for all floating-point functions to
handle properly the non-numerical values like infinity and nan, if
not defined, non-numerical values will be treated as described in
1.4.2 Non-numerical Values.

56800E Family IEEE-754 Compliant Floating-Point Library RCSL FP 1.0 — Rev. 0.4

6 User Guide Freescale



User Guide
Supported IEEE-754 Features Description

1.4 Supported IEEE-754 Features Description

1.4.1 Format

The implementation uses the single-precision format described in [1].
The implementation does not use extended and double precision
formats.

1.4.2 Non-numerical Values

RCSLFP 1.0 —Rev. 0.4

Depending on the library variant, the non-numerical values like: NaN
(not a number) and Inf (infinity) may be or may not be supported. If
supported, the non-numerical values are treated by the floating-point
functions as specified in [1].

If the non-numerical values are not supported, they are handled in a
special way described below:

If non-numerical values are supplied as input arguments, they are
treated as normalized numbers as follows (e is the exponent, ris the
mantissa and v is the actual value):

« ife =255 and f = 0, then the value is equal to v = (-1)* 2'**

orv = (-1)’ 2" 1 ) (Infinity)
« if e = 255 and f#0, then the value is equal to v = (-1)' 2'® 1 )
(NaN)

HQRE)

Additionally if non-numerical values are not supported, the floating-point
functions produce results which are limited by the value corresponding
to infinity ((-1)° '** (1 ) ). In other words, it is not possible to produce
a value which is larger in magnitude than a value corresponding to
infinity (even if the input arguments would have suggested something
oppositely).

This means that there are several operations which are defined as
incorrect by [1]. Some examples follow (NaN =a NaN number, Inf =
Infinity):

* NaN - NaN = 0 (zero)

*+ NaN + NaN = Inf

* Inf-Inf=0 (zero)

* Nan*Nan = Inf

56800E Family IEEE-754 Compliant Floating-Point Library

Freescale

User Guide 7



If non-numerical values are not supported, the result of division by zero
is computed in a special way. In case the denominator is zero, and the
numerator is not zero (can be a number, infinity or NaN), the result will
be infinity with the sign computed according to provided arguments. In

case the denominator is zero and the numerator is zero, the result will

be zero with appropriate sign resulting from the division arguments.

1.4.3 Floating-point State

Currently floating-point state is not supported.

1.4.4 Sub-normal Values
The sub-normal values are supported by all library variants.

It is not possible to let the floating-point functions treat the sub-normal
values in a different way (for example as zero, so called
flushing-to-zero).

1.4.5 Exceptions/Traps

Exception/traps handling is currently not supported. As limited work-
around one may use functions handling non-numerical behaviour
provided in the file fpnonnum 56800e . h.

1.4.6 Rounding

The implementation uses different rounding depending on the
floating-point library variant (see Table 1-1).

1.4.6.1 The fast variant

All routines provided by the balan and advan variants exhibit consistent
rounding modes. The fast variant, in opposite, does not support rounding
in a consistent way, which means that depending on arguments and
result the actually used rounding mode may vary. Thus the results of
computations performed by functions may differ by 1 ulp from a correct
value.

For addition, subtraction, multiplication and division the rounding mode
is unspecified.

56800E Family IEEE-754 Compliant Floating-Point Library RCSL FP 1.0 — Rev. 0.4

8 User Guide Freescale



User Guide
Known Issues

For other functions the round-toward-zero rounding mode is used.

1.4.6.2 The balan variant

All applicable functions follow round-to-nearest-even rounding mode.

For rounding to the nearest even number, the implementation uses the
56800E device hardware function of convergent rounding. It means that
the rounding behaviour of the floating-point library function will follow the
56800E device rounding mode bit in the OMR register.

1.4.6.3 The advan variant

1.5 Known Issues

RCSLFP 1.0 —Rev. 0.4

The advan variant support various rounding modes (toward zero, toward
plus/minus infinity, to nearest even).

The rounding mode can be set by the floating-point state control
functions ([2]).

With exception of implicit float-to-integer conversions, all functions follow
the defined rounding mode.

The implicit float-to-integer conversions follow the toward-zero rounding
mode. If round-to-nearest even rounding mode is required, the user is
advised to use the appropriate variant of conversion functions (with the
suffix r: ftosr, ftousr, ftolr, Ttoulr) by explicit calls.

The compiler does not generate interrupt wrappers around floating point
routines. It may cause unwanted register corruption in interrupt service
routines. As work-around, it is necessary to check what registers are
used by a particular floating-point routine and make appropriate backup
of register on stack. A list of registers used is provided in all assembly
source files containing interrupt wrappers with the tag 1sr, for example
fpsrc_56800e_addfisr_balan.asm.

56800E Family IEEE-754 Compliant Floating-Point Library

Freescale

User Guide 9



1.6 Bibliography

1. ANSI/IEEE Std. 754-1985 IEEE Standard for Binary Floating-Point
Arithmetic

2. ISO/IEC 9899:1999 Programming languages - C
3. What Every Computer Scientist Should Know About Floating-Point

Arithmetic David Goldberg ACM Computing Surveys, Vol 23, No 1,
March 1991

56800E Family IEEE-754 Compliant Floating-Point Library RCSL FP 1.0 — Rev. 0.4

10 User Guide Freescale



Floating-Point Function Summary
Execution Times

Section 2. Floating-Point Function Summary

The floating-point functions summary is provided in a form of a table. The
table divides all functions into a few groups. Then for each function,
which is identified by its tag (see 1.2 Usage how to construction the full
function name from its tag), types of input arguments and a type of the
return value is provided.

2.1 Execution Times

RCSLFP 1.0 —Rev. 0.4

The tables contain the execution time expressed in clock cycles. It is
assumed that all floating-point code is located in the internal flash of the
device and the clock is set to its maximum value allowed.

Performance figures are provided for three cases, denoting different set
of arguments:

* both input arguments are numerical (not de-normalized)

» atleast one of the input arguments is de-normalized, but none of
them is non-numerical (NaN or infinity)

+ at least one of the input argument is non-numerical (NaN or
infinity)

For each arguments set, a separate table is created with relevant
performance figures.

In case, when a particular library variant is not predicted to work with a
specific arguments set, the string N/A is placed in the table instead of a
number.

In case, the input argument is an integer type, the performance figures
are placed in the table corresponding to the arguments set, when both
input arguments are numerical and not de-normalized.

Notes to the tables:

The “?” operator, temporarily used in the tables, has the following
meaning:

e ifx=y,thenx?y =
e if x>y ,thenx?y =

| |
- O

56800E Family IEEE-754 Compliant Floating-Point Library

Freescale

Floating-Point Function Summary 11



Floating-Point Function Summary

if x<y,thenx?2y =2

if x,y areunordered, then x?y =3

Table 2-1 Floating-Point Function Summary

- both arguments are numerical and not de-normalized

Execution Time MIN/MAX
Fgr;g::;n Fu_l['nacglson Arguments Return Description [clock cycles]
fast balan advan
® addf Floating-point addition 111111 118/141 136/188
c
o
B subf Floating-point subtraction 118/119 126/149 182/196
E float, float float
2 mulf Floating-point multiplication 101/103 127/130 171174
©
@ divf Floating-point division 164/165 186/190 232/259
cmpf cmpf(x,y) = (X ? y) 46/50 46/48 58/58
2 cmpef cmpef(x,y) = (X ? y) 44/48 44/46 57/57
£5
é:% gtf gtf(x,y) = (x > y) 37/41 36/38 49/49
C S 0
§§ g 2 | gte gef(x,y) = (x >=y) 37/141 36/38 50/50
g 2 © 3 float, float short
§ %’: S Q| Itf 1tf(x,y) = (X <vy) 37/141 38/40 51/51
o o
gg lef lef(x,y) = (X <= Yy) 38/42 37/39 51/51
€
1S
38 2 eqf egqf(x,y) = (x == y) 38/42 38/40 50/50
nef nef(x,y) = (x I=y) 37/41 37/39 49/49
stof float signed 42/42 35/35 44/44
short
§ = unsigned
»Z 2 ustof float short Conversion from an integer type 25/25 20/35 29/44
o O
3 ‘a_: (as shown in argument type) to
- Itof float signed floating point type 44144 38/38 48/48
SE long
ultof float unsigned 25125 21/36 29/44
long
£ . % ftosr signed short float ) 38/38 38/38 45/45
80 Conversion from the
c £ § ftousr unsigned short float floating-point type to an integer 19/19 19/34 26/41
%o 0 type (as shown in argument
Q % é ftolr long float type) with directed rounding 38/38 38/38 48/48
S o
6L 3 mode
© = ftoulr unsigned long float 19/19 20/35 26/41
€ [} ftos signed short float 36/36 36/36 35/35
S &N Conversion from the
c g g ftous unsigned short float floating-point type to an integer 36/36 36/36 37137
'g S g type (as shown in argument
g % 5 ftol long float type) with round-toward-zero 35/35 60/60 72/86
585 rounding mode
o g ftoul unsigned long float 33/33 54/54 67/77

56800E Family IEEE-754 Compliant Floating-Point Library

RCSLFP 1.0 —Rev. 0.4

12

Floating-Point Function Summary

Freescale




Floating-Point Function Summary
Execution Times

Table 2-1 Floating-Point Function Summary
- both arguments are numerical and not de-normalized

Execution Time MIN/MAX
Function Function A [clock cycles]
Group Tags Arguments Return Description
fast balan advan
roundf Round to nearest even 26/26 26/26 32/32
floorf Round down (rounded number 25/25 25/25 32/32
is always less or equal)
()] .
= ceilf Round up (rounded number is 25/25 25/25 32/32
= float float always greater or equal)
o
= Round toward 0 (rounded
truncf number is less or equal in 26/26 26/26 33/33
magnitude)
rint Directed rounding 32/32 30/30 44/61

Table 2-2 Floating-Point Function Summary
- at least one argument is de-normalized and none is non-numerical

Execution Time MIN/MAX
Fgcg::;n Fu_l['nacglson Arguments Return Description [clock cycles]
fast balan advan
® addf Floating-point addition 110/113 118/143 136/190
c
o
B subf Floating-point subtraction 118/121 126/151 144/198
E float, float float
2 mulf Floating-point multiplication 101/103 127/140 171/187
@©
@ divf Floating-point division 164/171 186/205 232/266
cmpf cmpf(x,y) = (X ? y) 46/50 46/50 58/62
2 cmpef cmpef(x,y) = (X ? y) 44/48 44/48 57/61
56
;:% gtf gtf(x,y) = (x > y) 37/141 36/40 49/53
[=HE— ]
§§ ) 2 | gte gef(x,y) = (x >=y) 37/141 36/40 50/54
T00O5 float, float short
15 % &9 | i Itf(x,y) = X <y) 37/141 38/42 51/55
oo
gg lef lef(x,y) = (x <= y) 38/42 37/41 51/55
£
IS
38 2 eqf egqf(x,y) = (x == y) 38/42 38/42 50/54
nef nef(x,y) = (x I=y) 37/41 37/41 49/53
RCSL FP 1.0 —Rev. 0.4 56800E Family IEEE-754 Compliant Floating-Point Library

Freescale Floating-Point Function Summary 13




Floating-Point Function Summary

Table 2-2 Floating-Point Function Summary
- at least one argument is de-normalized and none is non-numerical

Execution Time MIN/MAX
Function Function A [clock cycles]
Group Tags Arguments Return Description
fast balan advan
stof float signed 64/64 75/75 114/114
short
§ % unsigned
": % ustof float short Conversion from an integer type 25/53 20/76 29/115
'g g (as shown in argument type) to
[} H . .
28 | itof float signed floating point type 67/67 87/87 1271127
G € long
8=
ultof float unsigned 25/64 21/85 29/123
long
E . ftosr signed short float . 60/60 60/60 67/67
Sgo Conversion from the
"é £ § ftousr unsigned short float floating-point type to an integer 19/47 19/47 26/54
R type (as shown in argument
g % é ftolr long float type) with directed rounding 61/61 61/61 71/71
3L 3 mode
© = ftoulr unsigned long float 19/58 20/59 26/65
€ o ftos signed short float N/A N/A N/A
S g [N Conversion from the
= g g ftous unsigned short float floating-point type to an integer N/A N/A N/A
-% o g type (as shown in argument
g | fol long float type) with round-toward-zero N/A N/A N/A
5§85 rounding mode
o g ftoul unsigned long float N/A N/A N/A
roundf Round to nearest even 86/86 86/86 92/92
floorf Round down (rounded number 100/101 100/101 107/108
is always less or equal)
()] .
5 ceilf Round up (rounded number is 100/101 100/101 107/108
= float float always greater or equal)
o
& Round toward 0 (rounded
truncf number is less or equal in 55/55 55/55 62/62
magnitude)
rint Directed rounding 61/61 90/90 90/128
56800E Family IEEE-754 Compliant Floating-Point Library RCSL FP 1.0 — Rev. 0.4

14 Floating-Point Function Summary Freescale



g |

Floating-Point Function Summary
Execution Times

Table 2-3 Floating-Point Function Summary
- at least one argument is non-numerical

Execution Time MIN/MAX
Function Function A [clock cycles]
Group Tags Arguments Return Description
fast balan advan
» addf Floating-point addition 89/113 N/A N/A
c
o
B subf Floating-point subtraction 97/121 N/A N/A
E float, float float
2 mulf Floating-point multiplication 103/103 N/A N/A
@©
@ divf Floating-point division 164/171 N/A N/A
cmpf cmpf(x,y) = (X ? y) 42/50 N/A N/A
2 cmpef cmpef(x,y) = (X ? y) 40/48 N/A N/A
56
8 =
é)*% gtf gtf(x,y) = (x > y) 37/141 N/A N/A
C S 0o
2382 |ge gef(x,y) = (X >= y) 37/41 N/A N/A
S 0095 float, float short
5 289 |if Itf(x,y) = (X <y) 37/141 N/A N/A
o3z
ég lef lef(x,y) = (X <= vy) 38/42 N/A N/A
IS
8 2 eqf eqf(x,y) = (X == y) 38/42 N/A N/A
nef nef(x,y) = (x I=y) 37/41 N/A N/A
stof float signed 42/42 N/A N/A
short
§ = unsigned
'g % ustof float short Conversion from an integer type 25/40 NiA NIA
® g (as shown in argument type) to
- Itof float signed floating point type 44144 N/A N/A
S long
SE
ultof float unsigned 25/40 N/A N/A
long
£ _ % ftosr signed short float ) 38/38 N/A N/A
gSgo Conversion from the
c g § ftousr unsigned short float floating-point type to an integer 19/34 N/A N/A
%5 9 type (as shown in argument
2L 0 ftolr long float type) with directed rounding 38/38 N/A N/A
§385S mode
o = ftoulr unsigned long float 19/34 N/A N/A
€ [} ftos signed short float N/A N/A N/A
S 3N Conversion from the
c ,g % ftous unsigned short float floating-point type to an integer N/A N/A N/A
'% ° § type (as shown in argument
g g | fol long float type) with round-toward-zero N/A N/A N/A
685 rounding mode
o g ftoul unsigned long float N/A N/A N/A
RCSL FP 1.0 —Rev. 0.4 56800E Family IEEE-754 Compliant Floating-Point Library

Freescale Floating-Point Function Summary 15




Floating-Point Function Summary

Table 2-3 Floating-Point Function Summary
- at least one argument is non-numerical

Execution Time MIN/MAX
F ti F ti L. clock cycles
g’:gdg" u_lpacglson Arguments Return Description [ y 1
fast balan advan
roundf Round to nearest even 26/26 N/A N/A
floorf Round down (rounded number 25/25 N/A N/A
is always less or equal)
()] .
% ceilf Round up (rounded number is 25/25 N/A N/A
= float float always greater or equal)
o
& Round toward 0 (rounded
truncf number is less or equal in 26/26 N/A N/A
magnitude)
rint Directed rounding 32/32 N/A N/A

56800E Family IEEE-754 Compliant Floating-Point Library

RCSLFP 1.0 —Rev. 0.4

16

Floating-Point Function Summary

Freescale




A
Floating-Point Function Summary
Execution Times
RCSL FP 1.0 —Rev. 0.4 56800E Family IEEE-754 Compliant Floating-Point Library

Freescale Floating-Point Function Summary 17



Floating-Point Function Summary

56800E Family IEEE-754 Compliant Floating-Point Library RCSL FP 1.0 — Rev. 0.4

18 Floating-Point Function Summary Freescale



A
Floating-Point Function Summary
Execution Times
RCSL FP 1.0 —Rev. 0.4 56800E Family IEEE-754 Compliant Floating-Point Library

Freescale Floating-Point Function Summary 19



Floating-Point Function Summary

56800E Family IEEE-754 Compliant Floating-Point Library RCSL FP 1.0 — Rev. 0.4

20 Floating-Point Function Summary Freescale



A
Floating-Point Function Summary
Execution Times
RCSL FP 1.0 —Rev. 0.4 56800E Family IEEE-754 Compliant Floating-Point Library

Freescale Floating-Point Function Summary 21



Floating-Point Function Summary
Execution Times

IMPORTANT. Read the following Freescale Software License Agreement ("Agreement") completely. By using the prod-
uct you indicate that you accept the terms of this Agreement.

FREESCALE SOFTWARE LICENSE AGREEMENT

This is a legal agreement between you (either as an individual or as an authorized representative of your employer) and
Freescale Semiconductor, Inc. (“Freescale”). It concerns your rights to use this file and any accompanying written materials (the
“Software”). In consideration for Freescale allowing you to access the Software, you are agreeing to be bound by the terms of
this Agreement. If you do not agree to all of the terms of this Agreement, do not download the Software. If you change your mind
later, stop using the Software and delete all copies of the Software in your possession or control. Any copies of the Software that
you have already distributed, where permitted, and do not destroy will continue to be governed by this Agreement. Your prior use
will also continue to be governed by this Agreement.

LICENSE GRANT. The Software may contain two types of programs: (i) programs enabling you to design a system (“System
Designs”), and (ii) programs that could be executed on your designed system (“System Software”). Your rights in these distinct
programs differ. With respect to System Designs, Freescale grants to you, free of charge, the non-exclusive, non-transferable
right to use, reproduce, and prepare derivative works of the System Designs for the sole purpose of designing systems that
contain a programmable processing unit obtained directly or indirectly from Freescale (“Freescale System”). You may not
distribute or sublicense the System Designs to others; however, you may sell Freescale Systems designed using the System
Design. Freescale does not grant to you any rights under its patents to make, use, sell, offer to sell, or import systems designed
using the System Designs. That is beyond the scope of this Agreement. With respect to System Software, Freescale grants to
you, free of charge, the non-exclusive, non-transferable right use, reproduce, prepare derivative works of the System Software,
distribute the System Software and derivative works thereof in object (machine-readable) form only, and to sublicense to others
the right to use the distributed System Software exclusively with Freescale Systems. You must prohibit your sublicensees from
translating, reverse engineering, decompiling, or disassembling the System Software except to the extent applicable law
specifically prohibits such restriction. If you violate any of the terms or restrictions of this Agreement, Freescale may immediately
terminate this Agreement, and require that you stop using and delete all copies of the Software in your possession or control.
You are solely responsible for systems you design using the Software.

COPYRIGHT. The Software is licensed to you, not sold. Freescale owns the Software, and United States copyright laws and
international treaty provisions protect the Software. Therefore, you must treat the Software like any other copyrighted material
(e.g., a book or musical recording). You may not use or copy the Software for any other purpose than what is described in this
Agreement. Except as expressly provided herein, Freescale does not grant to you any express or implied rights under any
Freescale or third party patents, copyrights, trademarks, or trade secrets. Additionally, you must reproduce and apply any
copyright or other proprietary rights notices included on or embedded in the Software to any copies or derivative works made
thereof, in whole or in part, if any.

SUPPORT. Freescale is NOT obligated to provide any support, upgrades or new releases of the Software. If you wish, you may
contact Freescale and report problems and provide suggestions regarding the Software. Freescale has no obligation whatsoever
to respond in any way to such a problem report or suggestion. Freescale may make changes to the Software at any time, without
any obligation to notify or provide updated versions of the Software to you.

NO WARRANTY. TO THE MAXIMUM EXTENT PERMITTED BY LAW, FREESCALE EXPRESSLY DISCLAIMS ANY
WARRANTY FOR THE SOFTWARE. THE SOFTWARE IS PROVIDED “AS 1S”, WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. YOU ASSUME THE ENTIRE
RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE SOFTWARE, OR ANY SYSTEMS YOU DESIGN USING THE
SOFTWARE (IF ANY). NOTHING IN THIS AGREEMENT MAY BE CONSTRUED AS A WARRANTY OR REPRESENTATION
BY FREESCALE THAT THE SOFTWARE OR ANY DERIVATIVE WORK DEVELOPED WITH OR INCORPORATING THE
SOFTWARE WILL BE FREE FROM INFRINGEMENT OF THE INTELLECTUAL PROPERTY RIGHTS OF THIRD PARTIES.

RCSL FP 1.0 — Rev. 0.4 56800E Family IEEE-754 Compliant Floating-Point Library

Freescale 22



