54F373,74F373 54F373 Octal Transparent Latch with TRI-STATE(RM) Outputs Literature Number: SNOS189A # 54F/74F373 Octal Transparent Latch with TRI-STATE® Outputs ### **General Description** # The 'F373 consists of eight latches with TRI-STATE outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH the bus output is in the high impedance state. #### **Features** - Eight latches in a single package - TRI-STATE outputs for bus interfacing - Guaranteed 4000V minimum ESD protection | Commercial | Military | Package
Number | Package Description | |--------------------|---------------|-------------------|---| | 74F373PC | | N20A | 20-Lead (0.300" Wide) Molded Dual-In-Line | | | 54F373DM (QB) | J20A | 20-Lead Ceramic Dual-In-Line | | 74F373SC (Note 1) | | M20B | 20-Lead (0.300" Wide) Molded Small Outline, JEDEC | | 74F373SJ (Note 1) | | M20D | 20-Lead (0.300" Wide) Molded Small Outline, EIAJ | | 74F373MSA (Note 1) | | MSA20 | 20-Lead Molded Shrink Small Outline, EIAJ Type II | | | 54F373FM (QB) | W20A | 20-Lead Cerpack | | | 54F373LM (QB) | E20A | 20-Lead Ceramic Leadless Chip Carrier, Type C | Note 1: Devices also available in 13" reel. Use suffix = SCX, SJX, and MSAX. ## **Logic Symbols** ## **Connection Diagrams** # **Unit Loading/Fan Out** | | | 54F/74F | | | | |--------------------------------|----------------------------------|------------------|---|--|--| | Pin Names Description | | U.L.
HIGH/LOW | Input I _{IH} /I _{IL}
Output I _{OH} /I _{OL} | | | | D ₀ -D ₇ | Data Inputs | 1.0/1.0 | 20 μA/ - 0.6 mA | | | | LE | Latch Enable Input (Active HIGH) | 1.0/1.0 | 20 μA/ -0.6 mA | | | | ŌĒ | Output Enable Input (Active LOW) | 1.0/1.0 | 20 μA/ – 0.6 mA | | | | O ₀ -O ₇ | TRI-STATE Latch Outputs | 150/40 (33.3) | −3 mA/24 mA (20 mA) | | | #### **Functional Description** The 'F373 contains eight D-type latches with TRI-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The TRI-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are in the bi-state mode. When $\overline{\text{OE}}$ is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches. #### **Truth Table** | | Inputs | Output | | |----|--------|----------------|----------------------------| | LE | ŌĒ | D _n | On | | Н | L | Н | Н | | Н | L | L | L | | L | L | Х | O _n (no change) | | Χ | Н | X | Z | H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance State # **Logic Diagram** Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. #### **Absolute Maximum Ratings** (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. $\begin{array}{lll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to} + 125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to} + 175^{\circ}\mbox{C} \\ \mbox{Plastic} & -55^{\circ}\mbox{C to} + 150^{\circ}\mbox{C} \\ \end{array}$ V_{CC} Pin Potential to Ground Pin -0.5V to +7.0V Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA **Note 1:** Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied. Note 2: Either voltage limit or current limit is sufficient to protect inputs. Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V # Recommended Operating Conditions Free Air Ambient Temperature Supply Voltage Military + 4.5V to + 5.5V Commercial + 4.5V to + 5.5V #### **DC Electrical Characteristics** | Symbol | Parameter | | 54F/74F | | | Units | V _{CC} | Conditions | | |------------------|--------------------------------------|--|--|-----|-------------|-------|-----------------|--|--| | Syllibol | | | Min | Тур | Max | 0 | | Conditions | | | V _{IH} | Input HIGH Voltage | | 2.0 | | | V | | Recognized as a HIGH Signal | | | V _{IL} | Input LOW Voltage | | | | 0.8 | ٧ | | Recognized as a LOW Signal | | | V _{CD} | Input Clamp Diode Vo | oltage | | | -1.2 | V | Min | $I_{\text{IN}} = -18 \text{ mA}$ | | | V _{OH} | Output HIGH
Voltage | 54F 10% V _{CC}
54F 10% V _{CC}
74F 10% V _{CC}
74F 10% V _{CC}
74F 5% V _{CC}
74F 5% V _{CC} | 2.5
2.4
2.5
2.4
2.7
2.7 | | | V | Min | $\begin{split} I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \\ I_{OH} &= -1 \text{ mA} \\ I_{OH} &= -3 \text{ mA} \end{split}$ | | | V _{OL} | Output LOW
Voltage | 54F 10% V _{CC}
74F 10% V _{CC} | | | 0.5
0.5 | V | Min | $I_{OL} = 20 \text{ mA}$ $I_{OL} = 24 \text{ mA}$ | | | I _{IH} | Input HIGH Current | 54F
74F | | | 20.0
5.0 | μΑ | Max | V _{IN} = 2.7V | | | I _{BVI} | Input HIGH Current
Breakdown Test | 54F
74F | | | 100
7.0 | μΑ | Max | V _{IN} = 7.0V | | | I _{CEX} | Output HIGH
Leakage Current | 54F
74F | | | 250
50 | μΑ | Max | V _{OUT} = V _{CC} | | | V _{ID} | Input Leakage
Test | 74F | 4.75 | | | V | 0.0 | $I_{\text{ID}} = 1.9 \mu\text{A}$
All Other Pins Grounded | | | I _{OD} | Output Leakage
Circuit Current | 74F | | | 3.75 | μΑ | 0.0 | V _{IOD} = 150 mV
All Other Pins Grounded | | | I _{IL} | Input LOW Current | | | | -0.6 | mA | Max | V _{IN} = 0.5V | | | lozh | Output Leakage Current | | | | 50 | μΑ | Max | V _{OUT} = 2.7V | | | l _{OZL} | Output Leakage Current | | | | -50 | μΑ | Max | V _{OUT} = 0.5V | | | Ios | Output Short-Circuit Current | | -60 | | -150 | mA | Max | V _{OUT} = 0V | | | I _{ZZ} | Bus Drainage Test | | | | 500 | μΑ | 0.0V | V _{OUT} = 5.25V | | | I _{CCZ} | Power Supply Current | | | 38 | 55 | mA | Max | V _O = HIGH Z | | ### **AC Electrical Characteristics** | Symbol Parameter | | $ \begin{array}{c} {\it T_{A}} = +25^{\circ}{\it C} \\ {\it V_{CC}} = +5.0{\it V} \\ {\it C_{L}} = 50{\it pF} \end{array} $ | | | T _A , V _C | 4F
C = Mil
50 pF | 74F T _A , V _{CC} = Com C _L = 50 pF | | Units | |------------------|---|---|------------|-------------|---------------------------------|------------------------|--|-------------|-------| | | | Min | Тур | Max | Min | Max | Min | Max | | | t _{PLH} | Propagation Delay
D _n to O _n | 3.0
2.0 | 5.3
3.7 | 7.0
5.0 | 3.0
2.0 | 8.5
7.0 | 3.0
2.0 | 8.0
6.0 | ns | | t _{PLH} | Propagation Delay
LE to O _n | 5.0
3.0 | 9.0
5.2 | 11.5
7.0 | 5.0
3.0 | 15.0
8.5 | 5.0
3.0 | 13.0
8.0 | ns | | t _{PZH} | Output Enable Time | 2.0
2.0 | 5.0
5.6 | 11.0
7.5 | 2.0
2.0 | 13.5
10.0 | 2.0
2.0 | 12.0
8.5 | ns | | t _{PHZ} | Output Disable Time | 1.5
1.5 | 4.5
3.8 | 6.5
5.0 | 1.5
1.5 | 10.0
7.0 | 1.5
1.5 | 7.5
6.0 | ns | # **AC Operating Requirements** | | | $74F$ $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ | | 54 | F | 74F | | | |--------------------|---|---|-----|--|-----|---------------------|-----|-------| | Symbol | Parameter | | | T _A , V _{CC} = Mil | | $T_A, V_{CC} = Com$ | | Units | | | | Min | Max | Min | Max | Min | Max | | | t _s (H) | Setup Time, HIGH or LOW
D _n to LE | 2.0
2.0 | | 2.0
2.0 | | 2.0
2.0 | | | | t _h (H) | Hold Time, HIGH or LOW
D _n to LE | 3.0
3.0 | | 3.0
4.0 | | 3.0
3.0 | | - ns | | t _w (H) | LE Pulse Width, HIGH | 6.0 | | 6.0 | | 6.0 | | ns | # **Ordering Information** The device number is used to form part of a simplified purchasing code where the package type and temperature range are defined as follows: # Physical Dimensions inches (millimeters) (Continued) #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Mellbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998 #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | Applications | |----------|--------------| |----------|--------------| Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID <u>www.ti-rfid.com</u> OMAP Mobile Processors <u>www.ti.com/omap</u> Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated