January 1998

'4LCX573 Low Voltage Octal Latch with 5V Tolerant Inputs and Outputs

FAIRCHILD

SEMICONDUCTOR TM

74LCX573 Low Voltage Octal Latch with 5V Tolerant Inputs and Outputs

General Description

The LCX573 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable $\overline{(OE)}$ inputs.

The LCX573 is functionally identical to the LCX373 but has inputs and outputs on opposite sides.

The LCX573 is designed for low voltage (3.3V) applications with capability of interfacing to a 5V signal environment. The LCX573 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Features

- 5V tolerant inputs and outputs
- 7.0 ns t_{PD} max, 10 µA I_{CCQ} max
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal
- 2.0V-3.6V V_{CC} supply operation
- ±24 mA output drive
- Implements patented noise/EMI reduction circuitry
- Functionally compatible with 74 series 573
- Latch-up performance exceeds 500 mA
- ESD performance:

Human body model > 2000V Machine model > 200V

Ordering Code:

Order Number	Package Number	Package Description
74LCX573WM	M20B	20-Lead (0.300" Wide) Molded Small Outline, SOIC, JEDEC
74LCX573SJ	M20D	20-Lead Molded Small Outline, SOIC, EIAJ
74LCX573MSA	MSA20	20-Lead Molded Shrink Small Outline, SSOP, TYPE II
74LCX573MTC	MTC20	20-Lead Think Shrink Small Outline, TSSOP, JEDEC

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

www.fairchildsemi.com

Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
LE	Latch Enable Input
OE	3-STATE Output Enable Input
0 ₀ -0 ₇	3-STATE Latch Outputs

Truth Table

Inputs			Outputs
OE	LE	D	0 _n
L	н	Н	Н
L	н	L	L
L	L	X	Oo
Н	Х	X	Z

H = HIGH Voltage

L = LOW Voltage Z = High Impedance

X = Immaterial $O_0 = Previous O_0 before HIGH-to-LOW transition of Latch Enable$

Functional Description

The LCX573 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the D_n inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a

setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (\overline{OE}) input. When \overline{OE} is LOW, the buffers are enabled. When \overline{OE} is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Absolute Maximum Ratings (Note 1)						
Symbol	Parameter	Value	Conditions	Units		
V _{CC}	Supply Voltage	-0.5 to +7.0		V		
VI	DC Input Voltage	-0.5 to +7.0		V		
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V		
		-0.5 to V _{CC} + 0.5	Output in High or Low State (Note 2)	V		
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA		
I _{ок}	DC Output Diode Current	-50	V _O < GND	mA		
		+50	$V_{\rm O} > V_{\rm CC}$			
lo	DC Output Source/Sink Current	±50		mA		
I _{CC}	DC Supply Current per Supply Pin	±100		mA		
I _{GND}	DC Ground Current per Ground Pin	±100		mA		
T _{STG}	Storage Temperature	-65 to +150		°C		

Recommended Operating Conditions (Note 3)

Symbol	Parameter	Min	Max	Units	
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	
VI	Input Voltage		0	5.5	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	
I _{OH} /I _{OL}	Output Current	V _{CC} = 3.0V-3.6V		±24	mA
		$V_{CC} = 2.7 V$		±12	
T _A	Free-Air Operating Temperature		-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_O Absolute Maximum Rating must be observed.

Note 3: Unused (inputs or I/O's) must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Conditions V _{CC}	T _A = -40°C to +85°C		Units
			(V)	Min	Max	1
VIH	HIGH Level Input Voltage		2.7-3.6	2.0		V
VIL	LOW Level Input Voltage		2.7-3.6		0.8	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7-3.6	V _{CC} – 0.2		V
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -18 mA	3.0	2.4		V
		I _{OH} = -24 mA	3.0	2.2		V
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7-3.6		0.2	V
		I _{OL} = 12 mA	2.7		0.4	V
		I _{OL} = 16 mA	3.0		0.4	V
		I _{OL} = 24 mA	3.0		0.55	V
l _l	Input Leakage Current	$0 \le V_I \le 5.5V$	2.7-3.6		±5.0	μA
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 5.5V$	2.7-3.6		±5.0	μA
		$V_I = V_{IH} \text{ or } V_{IL}$				
I _{OFF}	Power-Off Leakage Current	$V_{\rm I}$ or $V_{\rm O}$ = 5.5V	0		10	μA
I _{cc}	Quiescent Supply Current	V _I = V _{CC} or GND	2.7-3.6		10	μA
		$3.6V \le V_I, V_O \le 5.5V$	2.7-3.6		±10	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		500	μA

AC Electrical Characteristics

Symbol	Parameter	$T_{A} = -40^{\circ}C$ to +85°C, $C_{L} = 50pF$, $R_{L} = 500 \Omega$				Units
		V _{CC} = 3	V _{CC} = 3.3V ±0.3V		V _{CC} = 2.7V	
		Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	8.0	1.5	9.0	ns
t _{PLH}	D _n to O _n	1.5	8.0	1.5	9.0	
t _{PHL}	Propagation Delay	1.5	8.5	1.5	9.5	ns
t _{PLH}	LE to On	1.5	8.5	1.5	9.5	
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	ns
t _{PZH}		1.5	8.5	1.5	9.5	
t _{PLZ}	Output Disable Time	1.5	6.5	1.5	7.0	ns
t _{PHZ}		1.5	6.5	1.5	7.0	
t _S	Setup Time, D _n to LE	2.5		2.5		ns
t _H	Hold Time, Dn to LE	1.5		1.5		ns
t _W	LE Pulse Width	3.3		3.3		ns
t _{OSHL}	Output to Output Skew (Note 4)		1.0			ns
t _{OSLH}			1.0			

Note 4: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (t_{OSHL}) or LOW to HIGH (t_{OSLH}).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	Vcc	T _A = 25°C	Units
			(V)	Typical	
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_{L} = 50 \text{ pF}, \text{ V}_{IH} = 3.3 \text{V}, \text{ V}_{IL} = 0 \text{V}$	3.3	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	C_L = 50 pF, V_{IH} = 3.3V, V_{IL} = 0V	3.3	-0.8	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	V_{CC} = Open, V_{I} = 0V or V_{CC}	7	pF
C _{OUT}	Output Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC} , f = 10 MHz	25	pF

www.fairchildsemi.com

www.fairchildsemi.com

