54/7493A 54LS/74LS93 **DIVIDE-BY-SIXTEEN COUNTER**

DESCRIPTION — The '93 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divideby-eight. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state.

ORDERING CODE: See Section 9

	PIN	COMMERCIAL GRADE	MILITARY GRADE	PKG
PKGS	ουτ	$V_{CC} = +5.0 V \pm 5\%,$ $T_A = 0^{\circ} C to +70^{\circ} C$	$V_{CC} = +5.0 V \pm 10\%,$ T _A = -55° C to +125° C	TYPE
Plastic DIP (P)	A	7493APC, 74LS93PC		9A
Ceramic DIP (D)	A	7493ADC, 74LS93DC	5493ADM, 54LS93DM	6A
Flatpak (F)	A	7493AFC, 74LS93FC	5493AFM, 54LS93FM	31

INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions

PIN NAMES	DESCRIPTION	54/74 (U.L.) HIGH/LOW	54/74LS (U.L.) HIGH/LOW	
CP ₀	÷2 Section Clock Input (Active Falling Edge)	2.0/2.0	1.0/1.5	
CP ₁	÷5 Section Clock Input (Active Falling Edge)	2.0/2.0	1.0/1.0	
MR ₁ , MR ₂	Asynchronous Master Reset Inputs (Active HIGH)	1.0/1.0	0.5/0.25	
Q ₀	÷2 Section Output*	20/10	10/5.0 (2.5)	
Q1 — Q3	÷8 Section Outputs	20/10	10/5.0 (2.5)	

*The Q_0 output is guaranteed to drive the full rated fan-out plus the \overline{CP}_1 input.

CONNECTION DIAGRAM

Vcc = Pin 5 GND = Pin 10NC = Pins 4, 6, 7, 13 **FUNCTIONAL DESCRIPTION** — The '93 is a 4-bit ripple type binary counter. It consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-eight section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the Q outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The Q₀ output of each device is designed and specified to drive the rated fan-out plus the $\overline{CP_1}$ input of the device. A gated AND asynchronous Master Reset (MR₁, MR₂) is provided which overrides the clocks and resets (clears) all the flip-flops. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.

- A. 4-Bit Ripple Counter The output Q_0 must be externally connected to input \overrightarrow{CP}_1 . The input count pulses are applied to input \overrightarrow{CP}_0 . Simultaneous divisions of 2, 4, 8, and 16 are performed at the Q_0 , Q_1 , Q_2 , and Q_3 outputs as shown in the Truth Table.
- B. 3-Bit Ripple Counter The input count pulses are applied to input \overrightarrow{CP}_1 . Simultaneous frequency divisions of 2, 4, and 8 are available at the Q₁, Q₂, and Q₃ outputs. Independent use of the first flip-flop is available if the reset function coincides with reset of the 3-bit ripple-through counter.

RESET INPUTS		OUTPUTS			
MR1	MR ₂	Q ₀	Q1	Q2	Q3
H L H L	H H L L	LLLL Count Count Count			

MODE SELECTION	N	٨C)DE	SEI	LEC	τιοι	٧
----------------	---	----	-----	-----	-----	------	---

				-	
н	= HI	GH	Voltage	Lev	el

L = LOW Voltage Level

TRUTH TABLE

	OUTPUTS					
COUNT	Q ₀	Q1	Q2	Q3		
0	L	L	L	L		
1	н	L	L	L		
2	L	н	L	L		
3	н	н	L	L		
4	L	L	н	L		
5	н	L	н	L L L		
6	L	н	н	L		
7	н	н	н	L		
8	L	L	L	н		
9	н	L	L	н		
10	L	н	L	н		
11	н	н	L	н		
12	L	L	н	н		
13	н	L	н	н		
14	L	н	н	Η		
15	н	н	н	н		

NOTE: Output Q₀ connected to CP₁.

LOGIC DIAGRAM

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54/74 54/74LS SYMBOL UNITS CONDITIONS PARAMETER Min Max Min Max Input HIGH Current 0.2 $V_{CC} = Max, V_{IN} = 5.5 V$ Ιн 1.0 mΑ CP0 or CP1 Power Supply Current 39 15 mΑ Vcc = Max Icc. AC CHARACTERISTICS: $V_{CC} = +5.0 \text{ V}$, $T_A = +25^{\circ} \text{ C}$ (See Section 3 for waveforms and load configurations) 54/74 54/74LS SYMBOL PARAMETER $C_L = 15 \text{ pF}$ $C_L = 15 \text{ pF}$ UNITS CONDITIONS $R_L = 400 \Omega$ Min Max Min Max Maximum Count Frequency 32 32 fmax MHz Figs. 3-1, 3-9 CPo Input Maximum Count Frequency 16 16 MH₇ Figs. 3-1, 3-9 fmax CP1 Input **t**PLH Propagation Delay 16 16 Figs. 3-1, 3-9 ns CPo to Qo 18 **tPHL** 18 70 70 Propagation Delay **t**PLH ns Figs. 3-1, 3-9 70 **tPHL** CPn to Qa 70 Propagation Delay 16 **t**PLH 16 ns Figs. 3-1, 3-9 CP1 to Q1 21 21 **tPHL** Propagation Delay **TPLH** 32 32 ns Figs. 3-1, 3-9 CP1 to Q2 35 35 **t**PHL Propagation Delay 51 51 **t**PLH Figs. 3-1, 3-9 ns CP1 to Q3 51 51 **tPHL** Propagation Delay **t**PHL 40 40 ns Figs. 3-1, 3-17 MR to Qn

AC OPERATING REQUIREMENTS: $V_{CC} = +5.0 \text{ V}, \text{ T}_{A} = +25^{\circ} \text{ C}$

SYMBOL	PARAMETER	54/74		54/74LS		UNITS	CONDITIONS
		Min	Max	Min	Max	0	
t _w (H)	CP ₀ Pulse Width HIGH	15		15		ns	Fig. 3-9
t _w (H)	CP1 Pulse Width HIGH	30		30		ns	Fig. 3-9
t _w (H)	MR Pulse Width HIGH	15	_	15		ns	Fig. 3-17
t _{rec}	Recovery Time, MR to CP	25		25		ns	Fig. 3-17

93