

74LVQ174 Low Voltage Hex D Flip-Flop with Master Reset

General Description

The LVQ174 is a high-speed hex D flip-flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the D inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops.

Features

- Ideal for low power/low noise 3.3V applications
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin skew AC performance
- Guaranteed incident wave switching into 75Ω
- MIL-STD-883 54AC products are available for Military/ Aerospace applications

Ordering Code: See Section 11

Logic Symbols

Pin Assignment for SOIC JEDEC and EIAJ

Connection Diagram

TL/F/11353-3

Pin Names	Description			
D ₀ -D ₅	Data Inputs			
CP	Clock Pulse Input			
MR	Master Reset Inpu			
Q0-Q5	Outputs			

	SOIC JEDEC	SOIC EIAJ
Order Number	74LVQ174SC 74LVQ174SCX	
See NS Package Number	M16A	M16D

Functional Description

The LVQ174 consists of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (MR) are common to all flip-flops. Each D input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset (MR) will force all outputs LOW independent of Clock or Data inputs. The LVQ174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Truth Table

	Inputs	Output						
MR	СР	D	Q					
L	X	X	L –					
н	1	н	н					
н	~	L	L					
н	L	×	Q					

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings (Note)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	— 20 mA
$V_{\rm I} = V_{\rm CC} + 0.5 V$	+ 20 mA
DC Input Voltage (VI)	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (IOK)	
$V_{O} = -0.5V$	-20 mA
$V_{\rm O} = V_{\rm CC} + 0.5 V$	+ 20 mA
DC Output Voltage (VO)	-0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	± 50 mA
DC V _{CC} or Ground Current	
(ICC or IGND)	±200 mA
Storage Temperature (T _{STG})	-65°C to +150°C
DC Latch-Up Source or	
Sink Current	±100 mA

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DC Characteristics

Recommended Operating Conditions

Supply Voltage (V _{CC}) LVQ	2.0V to 3.6V
Input Voltage (VI)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A) 74LVQ	40°C to + 85°C
Minimum Input Edge Rate ($\Delta V/\Delta t$) V _{IN} from 0.8V to 2.0V	
V _{CC} @ 3.0V	125 mV/ns

			74LV	Q174	74LVQ174			
Symbol	Parameter	V _{CC} (V)	$T_{A} = +25^{\circ}C$				Units	Conditions
			Тур	Typ Guaranteed Limits				
VIH	Minimum High Level Input Voltage	3.0	1.5	2.0 2.0		v	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$	
VIL	Maximum Low Level Input Voltage	3.0	1.5	0.8	0.8	v	$V_{OUT} = 0.1V$ or $V_{CC} - 0.1V$	
V _{OH}	Minimum High Level Output Voltage	3.0	2.99	2.9	2.9	v	l _{OUT} = -50 μA	
		3.0		2.58	2.48	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $V_{OH} = -12 \text{ mA}$	
V _{OL}	Maximum Low Level Output Voltage	3.0	0.002	0.1	0.1	v	l _{OUT} = 50 μA	
	÷	3.0	÷	0.36	0.44	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 12 \text{ mA}$	
lin	Maximum Input Leakage Current	3.6		±0.1	±1.0	μΑ	$V_{I} = V_{CC}, GND$	

*All outputs loaded; thresholds on input associated with output under test.

LVQ174

LVQ174

			74LV	Q174	74LVQ174		
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
			Тур	Gua	ranteed Limits		
IOLD	†Minimum Dynamic Output Current	3.6			36	mA	V _{OLD} = 0.8V Max (Note 1)
I _{OHD}		3.6			-25	mA	V _{OHD} = 2.0V Min (Note 1)
Icc	Maximum Quiescent Supply Current	3.6		4.0	40.0	μA	V _{IN} = V _{CC} or GND
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.7	0.8		v	(Notes 2, 3)
VOLV	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.6	-0.8		v	(Notes 2, 3)
VIHD	Maximum High Level Dynamic Input Voltage	3.3	1.8	2.0		v	(Notes 2, 4)
VILD	Maximum Low Level Dynamic Input Voltage	3.3	1.6	0.8		v ^{al}	(Notes 2, 4)

†Maximum test duration 2.0 ms, one output loaded at a time.

Note 1: Incident wave switching on transmission lines with impedances as low as 75Ω for commercial temperature range is guaranteed for 74LVQ. Note 2: Worst case package.

Note 3: Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V; one output at GND.

Note 4: Max number of Data Inputs (n) switching. (n - 1) inputs switching 0V to 3.3V. Input-under-test switching: 3.3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}), f = 1 MHz.

AC Electrical Characteristics: See Section 2 for Test Methodology

				74LVQ174		74LV	Q174	
Symbol Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF			$T_{A} = -40^{\circ}C$ to +85^{\circ}C C_{L} = 50 pF		Units	
		Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	2.7 3.3 ±0.3	60 90	90 100		50 70		MHz
t _{PLH}	Propagation Delay CP to Q _n	2.7 3.3 ±0.3	2.0 2.0	10.8 9.0	16.2 11.5	1.5 1.5	18.0 12.5	ns
t _{PHL}	Propagation Delay CP to Q _n	2.7 3.3 ±0.3	2.0 2.0	10.2 8.5	15.5 11.0	1.5 1.5	17.0 12.0	ns
t _{PHL}	Propagation Delay MR to Q _n	2.7 3.3 ±0.3	2.5 2.5	10.8 9.0	16.2 11.5	2.0 2.0	18.0 12.5	ns
	Output to Output Skew*	2.7 3.3 ±0.3		1.0 1.0	1.5 1.5		1.5 1.5	ns

*Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH to LOW (toSHL) or LOW to HIGH (toSLH). Parameter guaranteed by design.

Symbol Parameter			74LV	Q174	74LVQ174	
	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF		$T_{A} = -40^{\circ}C$ to +85^{\circ}C C_{L} = 50 pF	Units
		Γ	Тур	Guarant	teed Minimum	_
t _s	Setup Time, HIGH or LOW D _n to CP	2.7 3.3 ±0.3	3.0 2.5	8.0 6.5	10.0 7.0	ns
t _h	Hold Time, HIGH or LOW D _n to CP	2.7 3.3 ±0.3	1.2 1.0	4.0 3.0	4.5 3.0	ns
t _w	MR Pulse Width, LOW	2.7 3.3 ±0.3	1.2 1.0	7.0 5.5	10.0 7.0	ns
t _w	CP Pulse Width	2.7 3.3 ±0.3	1.2 1.0	7.0 5.5	10.0 7.0	ns
t _{rec}	Recovery Time MR to CP	2.7 3.3 ±0.3	0	3.5 2.5	3.5	ns

LVQ174

Capacitance

Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	V _{CC} = Open
C _{PD} (Note 1)	Power Dissipation Capacitance	23	pF	$V_{CC} = 3.3V$

Note 1: C_{PD} is measured at 10 MHz.