ADVANCE INFORMATION # 74LVT16245 3.3V ABT 16-Bit Transceiver with TRI-STATE® Outputs ### **General Description** The LVT16245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The T/\overline{R} inputs determine the direction of data flow through the device. The \overline{OE} inputs disable both the A and B ports by placing them in a high impedance state. This non-inverting transceiver is designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16245 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation. #### Features - □ Input and output interface capability to systems at 5V Vcc. - ☐ Bus-Hold data inputs eliminate the need for external pull-up resistors to hold unused inputs - ☐ Live insertion/extraction permitted - □ Power Up/Down high impedance provides glitch-free bus loading - □ Outputs source/sink -32 mA/+64 mA - □ Available in SSOP and TSSOP - ☐ Functionally compatible with the 74 series 16245 - □ Latch-up performance exceeds 500 mA Ordering Code: See Section 11 ### **Logic Symbol** | Pin Names | Description | |---------------------------------|----------------------------------| | ŌE _n | Output Enable Input (Active Low) | | T/R _n | Transmit/Receive Input | | A ₀ -A ₁₅ | Side A Inputs/TRI-STATE Outputs | | B ₀ -B ₁₅ | Side B Inputs/TRI-STATE Outputs | | _ | SSOP | TSSOP JEDEC | |--------------------------|-------|---------------------------------| | Order Number | | 74LVT16245MTD
74LVT16245MTDX | | See NS Package
Number | MS48A | MTD48 | ## **Connection Diagram** #### Pin Assignment for SSOP and TSSOP | T/R ₁ — | 1 | 48 — OE ₁ | |--------------------|----|-----------------------| | в _о — | 2 | 47 — Ag | | в, — | 3 | 46 - A ₁ | | GND - | 4 | 45 - GND | | B ₂ — | 5 | 44 - A2 | | B ₃ — | 6 | 43 - A3 | | v _{cc} — | 7 | 42 - V _{CC} | | В4 — | 8 | 41 - A ₄ | | B ₅ — | 9 | 40 - A ₅ | | GND - | 10 | 39 — GND | | B ₆ — | 11 | 38 — A ₆ | | В ₇ — | 12 | 37 - A ₇ | | B ₈ — | 13 | 36 — A ₈ | | в ₉ — | 14 | 35 — A ₉ | | GND - | 15 | 34 - GND | | B ₁₀ — | 16 | 33 — A ₁₀ | | B _{1 1} — | 17 | 32 - A ₁₁ | | v _{cc} — | 18 | 31 - V _{CC} | | B ₁₂ — | 19 | 30 - A ₁₂ | | B ₁₃ — | 20 | 29 - A ₁₃ | | GND — | 21 | 28 — GND | | B ₁₄ — | 22 | 27 - A _{1.4} | | B ₁₅ — | 23 | 26 - A ₁₅ | | T/R2 - | 24 | 25 - OE ₂ | | | | | TL/F/12020-2 ## **Functional Description** The LVT16245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. ## **Truth Tables** | Inputs | | Outputs | | |-----------------|------------------|---|--| | OE ₁ | T/R ₁ | Outpute | | | L | L | Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇ | | | L | н | Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇ | | | Н | X | HIGH-Z State on A_0-A_7 , B_0-B_7 | | H = High Voltage Level L = Low Voltage Level | Inputs | | Outputs | | |-----------------|------|---|--| | ŌĒ ₂ | T/R2 | Cutputs | | | L | L | Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅ | | | L | н | Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅ | | | Н | X | HIGH-Z State on A_8-A_{15} , B_8-B_{15} | | X = Immaterial Z = High Impedance # **Logic Diagrams** Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.