ADVANCE INFORMATION

74LVT16245 3.3V ABT 16-Bit Transceiver with TRI-STATE® Outputs

General Description

The LVT16245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The T/\overline{R} inputs determine the direction of data flow through the device. The \overline{OE} inputs disable both the A and B ports by placing them in a high impedance state.

This non-inverting transceiver is designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16245 is fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- □ Input and output interface capability to systems at 5V Vcc.
- ☐ Bus-Hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- ☐ Live insertion/extraction permitted
- □ Power Up/Down high impedance provides glitch-free bus loading
- □ Outputs source/sink -32 mA/+64 mA
- □ Available in SSOP and TSSOP
- ☐ Functionally compatible with the 74 series 16245
- □ Latch-up performance exceeds 500 mA

Ordering Code: See Section 11

Logic Symbol

Pin Names	Description
ŌE _n	Output Enable Input (Active Low)
T/R _n	Transmit/Receive Input
A ₀ -A ₁₅	Side A Inputs/TRI-STATE Outputs
B ₀ -B ₁₅	Side B Inputs/TRI-STATE Outputs

_	SSOP	TSSOP JEDEC
Order Number		74LVT16245MTD 74LVT16245MTDX
See NS Package Number	MS48A	MTD48

Connection Diagram

Pin Assignment for SSOP and TSSOP

T/R ₁ —	1	48 — OE ₁
в _о —	2	47 — Ag
в, —	3	46 - A ₁
GND -	4	45 - GND
B ₂ —	5	44 - A2
B ₃ —	6	43 - A3
v _{cc} —	7	42 - V _{CC}
В4 —	8	41 - A ₄
B ₅ —	9	40 - A ₅
GND -	10	39 — GND
B ₆ —	11	38 — A ₆
В ₇ —	12	37 - A ₇
B ₈ —	13	36 — A ₈
в ₉ —	14	35 — A ₉
GND -	15	34 - GND
B ₁₀ —	16	33 — A ₁₀
B _{1 1} —	17	32 - A ₁₁
v _{cc} —	18	31 - V _{CC}
B ₁₂ —	19	30 - A ₁₂
B ₁₃ —	20	29 - A ₁₃
GND —	21	28 — GND
B ₁₄ —	22	27 - A _{1.4}
B ₁₅ —	23	26 - A ₁₅
T/R2 -	24	25 - OE ₂

TL/F/12020-2

Functional Description

The LVT16245 contains sixteen non-inverting bidirectional buffers with TRI-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Truth Tables

Inputs		Outputs	
OE ₁	T/R ₁	Outpute	
L	L	Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇	
L	н	Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇	
Н	X	HIGH-Z State on A_0-A_7 , B_0-B_7	

H = High Voltage Level

L = Low Voltage Level

Inputs		Outputs	
ŌĒ ₂	T/R2	Cutputs	
L	L	Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅	
L	н	Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅	
Н	X	HIGH-Z State on A_8-A_{15} , B_8-B_{15}	

X = Immaterial

Z = High Impedance

Logic Diagrams

Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.