



# 1024 BIT (256 x 4) STATIC MOS RAM WITH SEPARATE I/O

- 256 x 4 Organization to Meet Needs for Small System Memories
- Access Time 850 nsec Max.
- Single + 5V Supply Voltage
- Directly TTL Compatible All Inputs and Output
- Static MOS No Clocks or Refreshing Required
- Simple Memory Expansion Chip Enable Input

- Inputs Protected All Inputs Have Protection Against Static Charge
- Low Cost Packaging 22 Pin Plastic Dual-In-Line Configuration
- Low Power Typically 150 mW
- Three-State Output OR-Tie Capability
- Output Disable Provided for Ease of Use in Common Data Bus Systems

The Intel 8101-2 is a 256 word by 4 bit static random access memory element using normally off N-channel MOS devices integrated on a monolithic array. It uses fully DC stable (static) circuitry and therefore requires no clocks or refreshing to operate. The data is read out nondestructively and has the same polarity as the input data.

The 8101-2 is designed for memory applications where high performance, low cost, large bit storage, and simple interfacing are important design objectives.

It is directly TTL compatible in all respects: inputs, outputs, and a single +5V supply. Two chip-enables allow easy selection of an individual package when outputs are OR-tied. An output disable is provided so that data inputs and outputs can be tied for common I/O systems. Output disable is then used to eliminate any bidirectional logic.

The Intel 8101-2 is fabricated with N-channel silicon gate technology. This technology allows the design and production of high performance, easy-to-use MOS circuits and provides a higher functional density on a monolithic chip than either conventional MOS technology or P-channel silicon gate technology.

Intel's silicon gate technology also provides excellent protection against contamination. This permits the use of low cost silicone packaging.



#### Absolute Maximum Ratings\*

| Ambient Temperature Under Bias 0°C to 70°C                                 |
|----------------------------------------------------------------------------|
| Storage Temperature $\dots \dots \dots \dots \dots -65^{\circ}C$ to +150°C |
| Voltage On Any Pin<br>With Respect to Ground                               |
| Power Dissipation 1 Watt                                                   |

#### \*COMMENT:

Stresses above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **D.C. and Operating Characteristics**

 $T_A = 0^{\circ}C$  to  $70^{\circ}C$ ,  $V_{CC} = 5V \pm 5\%$  unless otherwise specified.

| Symbol           | Parameter                          | Min. | Тур. <sup>[1]</sup> | Max.            | Unit | Test Conditions                                    |
|------------------|------------------------------------|------|---------------------|-----------------|------|----------------------------------------------------|
|                  | Input Current                      |      |                     | 10              | μA   | V <sub>IN</sub> = 0 to 5.25V                       |
| LOH              | I/O Leakage Current <sup>[2]</sup> |      |                     | 15              | μA   | $\overline{CE}$ = 2.2V, V <sub>OUT</sub> = 4.0V    |
| LOL              | I/O Leakage Current <sup>[2]</sup> |      |                     | -50             | μA   | $\overline{CE}$ = 2.2V, V <sub>OUT</sub> = 0.45V   |
| I <sub>CC1</sub> | Power Supply Current               |      | 30                  | 60              | mA   | $V_{IN} = 5.25V, I_O = 0mA$<br>$T_A = 25^{\circ}C$ |
| I <sub>CC2</sub> | Power Supply Current               |      |                     | 70              | mA   | $V_{IN}$ = 5.25V, $I_O$ = 0mA<br>$T_A$ = 0°C       |
| VIL              | Input "Low" Voltage                | -0.5 |                     | +0.65           | V    |                                                    |
| VIH              | Input "High" Voltage               | 2.2  |                     | V <sub>CC</sub> | V    |                                                    |
| V <sub>OL</sub>  | Output "Low" Voltage               |      |                     | +0.45           | V    | I <sub>OL</sub> = 2.0mA                            |
| V <sub>OH</sub>  | Output "High" Voltage              | 2.2  |                     |                 | V    | I <sub>OH</sub> = -150 μA                          |

NOTE: 1. Typical values are for  $T_A = 25^{\circ}C$  and nominal supply voltage.

2. Input and Output tied together.





### A.C. Characteristics

**READ CYCLE**  $T_A = 0^{\circ}C$  to  $70^{\circ}C$ ,  $V_{CC} = 5V \pm 5\%$ , unless otherwise specified.

| Symbol              | Parameter                                           | Min. | Тур. | Max. | Unit | <b>Test Conditions</b> |  |
|---------------------|-----------------------------------------------------|------|------|------|------|------------------------|--|
| tRCY                | Read Cycle                                          | 850  |      |      | ns   |                        |  |
| t <sub>A</sub>      | Access Time                                         |      |      | 850  | ns   |                        |  |
| tco                 | Chip Enable To Output                               |      |      | 650  | ns   | (See below)            |  |
| top                 | Output Disable To Output                            |      |      | 550  | ns   |                        |  |
| t <sub>DF</sub> [1] | Data Output to High Z State                         | 0    |      | 200  | ns   |                        |  |
| t <sub>OH</sub>     | Previous Data Read Valid<br>after change of Address | 0    |      |      | ns   |                        |  |

#### WRITE CYCLE

| Symbol                         | Parameter            | Min.   | Тур. | Max. | Unit | Test Conditions |  |
|--------------------------------|----------------------|--------|------|------|------|-----------------|--|
| twcy                           | Write Cycle          | 850 n: | ns   |      |      |                 |  |
| t <sub>AW</sub>                | Write Delay          | 150    |      |      | ns   | (See below)     |  |
| tcw                            | Chip Enable To Write | 750    |      |      | ns   |                 |  |
| t <sub>DW</sub>                | Data Setup           | 500    |      |      | ns   |                 |  |
| t <sub>DH</sub>                | Data Hold            | 100    |      |      | ns   |                 |  |
| twp                            | Write Pulse          | 630    | 1    |      | ns   |                 |  |
| t <sub>WR</sub> Write Recovery |                      | 50     |      |      | ns   |                 |  |

#### A. C. CONDITIONS OF TEST

| Input Pulse Levels: +0.65 Volt to 2.2 Vo     |                      |         |  |  |  |
|----------------------------------------------|----------------------|---------|--|--|--|
| Input Pulse Rise and I                       | 20 nsec              |         |  |  |  |
| Timing Measurement Reference Level: 1.5 Volt |                      |         |  |  |  |
| Output Load:                                 | 1 TTL Gate and $C_L$ | * 100pF |  |  |  |

### **Capacitance** $T_A = 25^{\circ}C$ , f = 1 MHz

| Sumbol          | Test                                                       | Limits (pF) |      |  |
|-----------------|------------------------------------------------------------|-------------|------|--|
| Symbol          | Test                                                       | Тур.        | Max. |  |
| C <sub>IN</sub> | Input Capacitance<br>(All Input Pins) V <sub>IN</sub> = 0V | 4           | 8    |  |
| COUT            | Output Capacitance V <sub>OUT</sub> = 0V                   | 8           | 12   |  |

## Waveforms



NOTES: 1. tDF is with respect to the trailing edge of CE1, CE2, or OD, whichever occurs first.

- 2. During the write cycle, OD is a logical 1 for common I/O and "don't care" for separate I/O operation.
- 3. OD should be tied low for separate I/O operation.