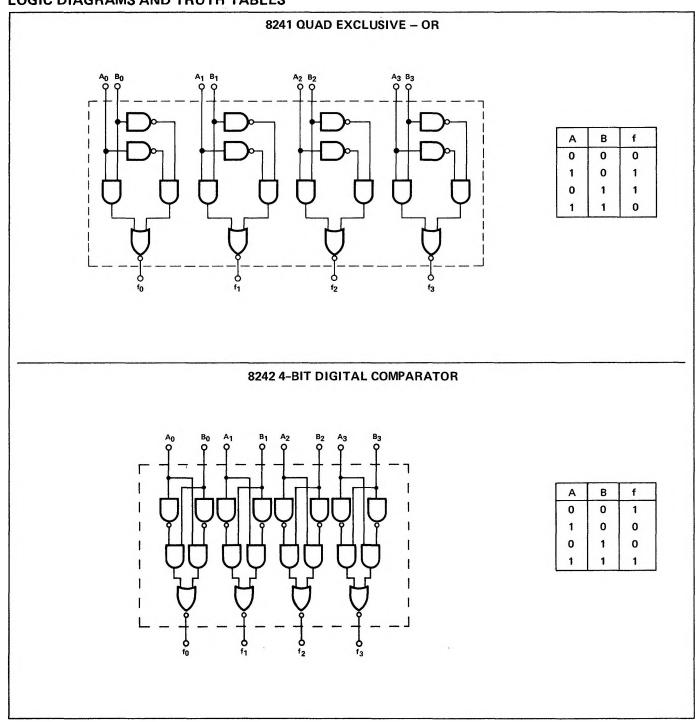
8241 8242

REFER TO PAGE 14 FOR A, F AND Q PACKAGE PIN CONFIGURATIONS.

DIGITAL 8000 SERIES TTL/MSI


DESCRIPTION

The 8241 contains four independent gating structures to perform the Exclusive-OR function on two input variables. The output of the 8241 employs the totem-pole structure characteristic of TTL devices.

The 8242 contains four independent Exclusive-NOR gates

which may be used to implement digital comparison functions. The 8242 outputs are bare collector to facilitate implementation of multiple-bit comparisons; a 4-bit comparison is made by connecting the outputs of the four independent gates together.

LOGIC DIAGRAMS AND TRUTH TABLES

ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

(8241)

CHARACTERISTICS	LIMITS				TEST			
	MIN.	TYP.	MAX.	UNITS	INPUTS		OUTPUTS	NOTES
					Α	В	0017013	
Output "1" Voltage	2.6	3.5		v	2.0	0.8	800µA	7
Output "0" Voltage			0.4	v	2.0	2.0	16mA	8
Input "1" Current			80	μА	4.5	4.5V		13
Input "0" Current	-0.1		-3.2	mA	0.4	0.4		14
Power/Current Consumption		225/42.4	300/57.1	mW/mA				
Output Short Circuit Current	-20		-70	mA			ov	6 7
Input Latch Voltage								
A Input	5.5			V	10mA	ov		10
B Input	5.5			v	0 V	10mA		10

 $T_A = 25^{\circ} C$ and $V_{CC} = 5.0 V$

(8241)

CHARACTERISTICS	LIMITS				TES	•		
	MIN.	TYP.	MAX.	UNITS	INPUTS			NOTES
					A	В	OUTPUTS	
Propagation Delay		12	20	ns				9

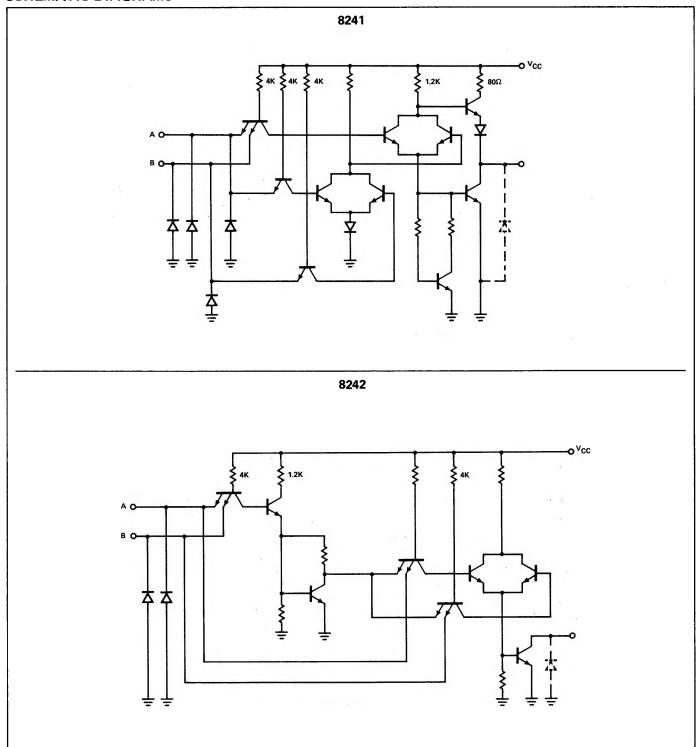
ELECTRICAL CHARACTERISTICS (Over Recommended Operating Temperature And Voltage)

(8242)

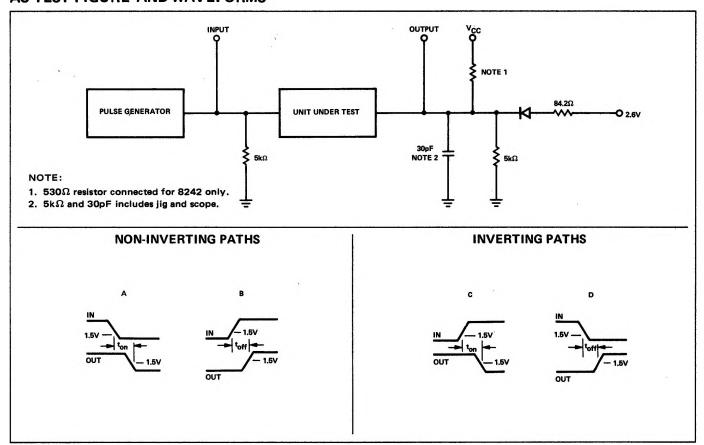
CHARACTERISTICS	LIMITS				TEST CONDITIONS			
	MIN.	TYP.	MAX.	UNITS	INPUTS		OUTPUT	NOTES
					A	В	OUIFUI	
Output "1" Leakage Current			25	μΑ	2.0	2.0		12
Output "0" Voltage			0.4	v	2.0	0.8	25mA	8
Input "1" Current			80	μА	4.5	4.5V		13
Inpute "0" Current	-0.1		-3.2	mA	0.4	0.4		14
Power/Current Consumption		170/32	250/47.5	mW/mA	0.4	0.4		15
Input Latch Voltage								
A Input	5.5			v	10mA	0V		
B Input	5.5		li di	v	ov	10mA		10
					20			

 $T_A = 25^{\circ} \, \text{C}$ and $V_{CC} = 5.0 \, \text{V}$

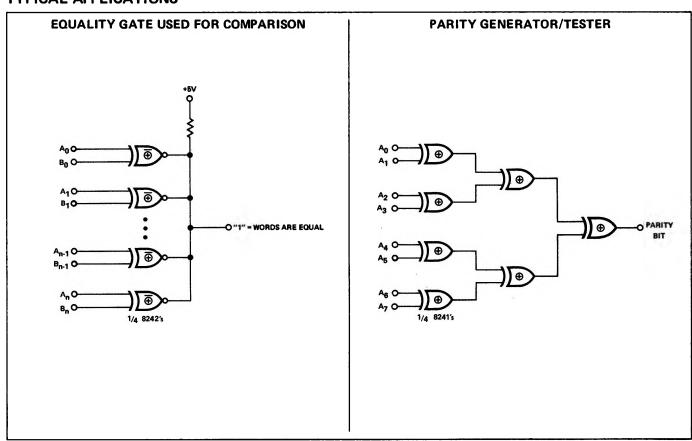
(8242)


CHARACTERISTICS	LIMITS				TES			
	MIN.	TYP.	MAX.	UNITS	INPUTS		OUTPUTS	INPUTS
					A	В	OUTPOIS	l
Propagation Delay		18	25	ns				9

NOTES:


- All voltage measurements are referenced to the ground terminal.
 Terminals not specifically referenced are left electrically open.
- 2. All measurements are taken with ground pin tied to zero volts.
- 3. Positive current flow is defined as into the terminal referenced.
- 4. Positive NAND logic definition: "UP" Level = "1", "DOWN" Level = "0".
- Precautionary measures should be taken to ensure current limiting in accordance with Absolute Maximum Ratings should the isolation diodes become forward biased.
- 6. Measurements apply to each gate element independently.
- 7. Output source current is supplied through a resistor to ground.
- 8. Output sink current is supplied through a resistor to V_{CC}.

- 9. Refer to AC Test Figure.
- This test guarantees operation free of input latch-up over the specified operating supply voltage range.
- Manufacturers reserves the right to make design and process changes and improvements.
- 12. Connect an external 1K $\pm 1\%$ resistor from $V_{\mbox{\footnotesize{CC}}}$ to the output terminal for this test.
- 13. A and B are tested separately. When A is 4.5V, B is 0V, and vice versa.
- 14. A and B are tested separately. When A is 0.4V, B is 5.25V, and vice versa.
- 15. V_{CC} = 5.25V.


SCHEMATIC DIAGRAMS

AC TEST FIGURE AND WAVEFORMS

TYPICAL APPLICATIONS

