Freescale Semiconductor HCS08QRUG
Users Guide Rev. 1, 2/2006

HCSO08 Peripheral Module
Quick Reference

A Compilation of Demonstration Software for HCS08 Modules

This collection of code examples, useful tips, and quick Topic Reference
reference material has been created to help users speed

. - . Using the Device Initialization 3
the development of their applications. Each section ne
S . . Using the Low Voltage Detect System 11
within this document contains an example that may be .
. . . Using the Internal Clock Source (ICS) 15
modified to work with HCS08 MCU Family members. .
When vou' re developing vour lication. consult vour Using the Internal Clock Generator (ICG) 23
y pingy app ’ y Programming the Low-Power Modes. 29

device data sheet for part-specific information, such as

. . . Using the External Interrupt Request Function (IRQ) 33
which versions of the peripheral modules are on your 9 preq (IRQ)

devi Using the Keyboard Interrupt (KBI) 37
evice. Using the Analog Comparator (ACMP) 41
This book begins with a section about device Using the 10-Bit Analog-to-Digital Converter (ADC) . 45
initialization, and then explores the different peripheral Using the Analog-to-Digital Converter (ATD). 49
modules found in the HCS08 Family of MCUs. It Using the Inter-Integrated Circuit (IIC) Module 53
concludes with two sections on implementing interrupt Using the Serial Communications Interface (SCI) . . . 63
subroutines and making memory usage assignmentsin Using the Serial Peripheral Interface (SPI) 69
an embedded C environment with CodeWarrior. Using the 8-Bit Modulo Timer (MTIM) 73
Using the Real-Time Interrupt (RTI) Function 77

Each section of this users guide contains:
Using the Input Capture and

» Programmer’s model register figure for quick Output Compare Functions 81
reference Generating PWM Signals
o Example code Using the HCSO08 Timer (TPM). 87
. . . Programming and Erasing Flash Memory 91
¢ Suppl emental information Supporting the code Implementing Interrupt Service Routines (ISR) in C
All codeis available inside a CodeWarrior project, or Using CodeWarrior ... RERSRRREE R 9
from Freescale's Web site in HCS08QGUGSW.zip. ~ Memor Mapping for HCSO8 Family MCUs Using
CodeWarrior Software 103

In-depth material about using the HCS08 modulesisalso
available in Freescal€'s application notes. See the
Freescale Web site: http://freescale.com

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

To provide the most up-to-date information, the revision of our documents on the World Wide Web will

bethe most current. Your printed copy may be an earlier revision. To verify you havethelatest information
available, refer to:

http://freescale.com/

Revision History

Revision _ Page
Date Level Description Number(s)
11/2005 0 Initial release N/A
Changing SCI1S1 line of code on page 65.
2/2006 1 Replacement code page 83, 84, and 89. 65,83, 84, 89

HCSO08 Peripheral Module Quick Reference, Rev. 1

Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Device Initialization for the
HCS08 Family Microcontrollers

By Gonzalo Delgado
RTAC Americas
México 2005

1 Ove I‘VieW Table of Contents

OVerview. 3
This document is a quick reference to the CodeWarrior Device Initialization Main Menu

Device Initialization tool for the HCS08 Family (Integrated into CW Main Menu). 4

N —

microcontrollers (MCUs). Basic information about the 3 Target CPU Window. ... 6

. L . . . 4 Inspector Dialog Window 7
functional description and configuration are provided. 5 Error Window 7
The example may be modified to suit the specific needs 6 Description of Generated Files 8
for your application — refer to the data sheet for your 7 Example Code and Explanation 8

device.

The Device Initialization (DI) tool is a user-friendly
application integrated into the CodeWarrior version 5.0
that contains a powerful code generator used to create
startup and initialization code that includes the
configuration of registersto allow the use of specific
modulesin the MCU.

This time-saving application will help the user in the
generation of code (relocatable ASM or C) to configure
the registers of the MCU modules. With the DI, the user
can migrate the initialization code from one family to
another in an easier way.

Thisfriendly graphical interface presentsthe MCU’s
pins, modules, and packages. When the user rolls the

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Device Initialization Main Menu (Integrated into CW Main Menu)

mouse over the modulestheir pinsare highlighted and a brief explanation of the device appears. Warnings
appear when avalue or configuration can’'t be defined. The DI has the ability to suggest or guide the user
in the configuration of modules. Thereis a section of the registers concerned in each module and a brief
description of each bit; these registers can be configured clicking bit by bit or with a predefined value.

The Device Initialization includes the following initialization modules, or beans':

Init ACMP_HCS08
Init. ADC_HCO08
Init_ ADC_HCS08
Init_AnalogModule HCO8
Init_CMT_HCS08
Init. FLASH_HCS08
Init_I1C_HCS08
Init_ RTI_HCS08
Init_SCI_HCS08
Init_SPI_HCS08
Init_ TPM_HCS08

Device Initialization Main Menu (Integrated into
CW Main Menu)

File Edit Wiew Search Project Processor Expert | Device Initialization Window Help
A 4 Initialize Device

I =RA BREF4YE K e

Backup Device Sektings ...

Restore Device Settings ...

050812 _tim_in_gb&0_mcp Update PE from Package ...
Qpkions
|-ﬂ Standard j B % B | Generate Code '050812_tim_jn_gbe0.mep’
. View Repork k
Files |Link Elru:lerl Targetsl T

Initialize Device — This command opens Target CPU window.

Backup Device Settings — This command stores compl ete design into single configuration file.
Directory and file name will be same as CW project. Previous version of the settings will be
automatically stored in the same directory in the following way:

— ProjectName.iPE — latest device settings
— ProjectName_0.iPE — oldest device settings
— ProjectName_1.iPE — next device settings
— ProjectName_2.iPE — next device settings

Not all 8-bit microcontrollers have the modules described in the list.

Using the Device Initialization for the HCS08 Family Microcontrollers

Freescale Semiconductor

Device Initialization Main Menu (Integrated into CW Main Menu)

— ProjectName_nnn.iPE — previous device settings

» Restore Device Settings — This command restores compl ete design from single configuration
file. Directory and file name will be selectable by the user. The user can use also settings from
different project — see command Backup Device Settings.

» Update PE from Package — Allows installing a patch or updating from the .PEUpd file.

* Options— Definesthe type of code that will be generated and options that will influence the code
generation.

* Generate Code — Generates code (Relocatable ASM or C).
* View Report — Submenu:
— Project Settings — Generates xml file with information about settings of all beansin the

design.
— Register Settings— Generates xml file with information about settings of al control registers
modified by the design.

— Interrupt Usage — Generates xml file with information about settings of all interrupt vectors
used in the design.

— Pin Usage — Generates xml file with information about settings of all pins used in the design.

Using the Device Initialization for the HCS08 Family Microcontrollers

Freescale Semiconductor 5

\
4

(

|
Target CPU Window

3

Target CPU Window

mHl s s Q
L
L
L
L
—a—y
L
i
e]
L
L
L
L
L
L
L

FTD

TFPR 2l

FCN L]

ZFN nc

IRGR adule IntFLAZH

LORLLLRRIIRRIILL

Acc

|F'TF |F'TF |[n0ne] |Genera| purpoze parallel 10 port PTF

Thisisthe main window where the MCU modules are listed among with their pins. By clicking into the
module user can access the configuration menu.

Unused peripherals are grayed; used ones are highlighted and embossed.
Single click to init peripheral and open inspector dialog.

Button for code generation (see top panel of the window).

CPU peripheralslist mode view, which contains al peripheralsin the list.

Closing the window suspends Processor Expert (PE). PE asks the user to save design if it is not
saved.

Closing CW project closes the window.

Target CPU window will be opened automatically with CW project if there is saved Device
Initialization design (and was not suspended).

Using the Device Initialization for the HCS08 Family Microcontrollers

Freescale Semiconductor

Inspector Dialog Window

Inspector Dialog Window

i~ Inspector Init_SCI x|
Bean Parameters Regqister Details
«| Device SCH |5CI1 ||... Hame Address | Init.value |Register Map
El| Settings SCIHBDH 0x0018 00 H| & & &
HE| Clock setting SCITBDL 0x0019 04 H *
+'| Baud rate divisor 4 D SCIC1 Dx001A 00 H
+*| Baud rate E2499.9534 baud SCIC2 0x0018 ol H
He'| Loop mode Dizabled SCI151 0x001C COH| S ebbeee
Fe | Receiver source Loop maode - SCI52 0x001D g1 1111111
He'| ToD1 pin direction It - SCIC3 Dx0D01E 00 H| &% &
He| Drata Format 3 bits - SCI1D 0x001F IlH *#*Seesss
He| Stop in W ait made Dizabled
e | Whake up Idle line wakeup -
He | Idle character counting — [After start bit -
| Parity Mone -
Fl« | Send break Dizabled
“+| Receiver wakeup Momal operation -
El| Pins
HE RD pin allocation Enabled
Lo [RuDr pin PTET_RxD1 PTE1_RxD1
L3 TxD pin allocation Enabled
|—|./| T#D pin PTED_TxD1 FTEO_T=D1
E| Interrupts o
HEI| Tx interrupt
«| |nterupt EEEE WaoiTty
«| Tranzmit intermipt Dizabled
«| Transmizsion complete it Dizabled
«| ISR name
HEl| Rx interrupt
':|./| Irberrpt M zciln Wacilr
|| Receive interupt Dizabled (2] =l
@ Dizable Peripheral Initialization | El El _‘?l \/ Ok | x Cancel |

Thiswindow showsall the options available for configuration with the selected module in different menus
and submenus.

» Cancel restores original design settings (design state before opening the inspector)

» Thiswindows contains corresponding values of control registers (see right side) — based on bean
settings. It allows modification of control register values and corresponding bean settings are
updated according to the value.

5 Error Window

=10 x|

'-.,-.'"-Errors: 0, warnings: 0, hints: 1

=7 @
? Hint: The FLL should be enabled when internal clock iz uzed otherwize the intemnal clock frequency can not be adjusted accuratel.

Error window will be displayed only if an error occurs. After resolving errors the window hides
automatically. An error is generated when the user misconfigures a module or parameters are missing.

Using the Device Initialization for the HCS08 Family Microcontrollers

Freescale Semiconductor 7

Description of Generated Files

6 Description of Generated Files

* Includefile (*.inc or *.h) - .*.h for C callable option. Note: Generated file name can be selected
using option “ Generated file”

* Implementation file (*.asm or *.c) — contains init function MCU _init that initializes selected
peripherals, interrupt vector table and selected interrupt service routines.

7

1.

o gk whN

: .|
Bean Parameters Register Details [
--’|EF"L| e MCIS0EGEEICFU Jhd | T Address | IniLvalue |Regizter Map =
Bl Clock settings & PTASE Ox0002 00 H|
| Savece CPU dock inkermal Clock >|B0MHz |® PTBSE Dx0005 00 nf
|=1 Internal Clock # PTCSE (w002 00 H|
| Intermal ozcillabor fregui 250.0 25000 kHz; Freguen | B PTDSE (xON0E 0] H]
| Initialze im walue no L | 5 PTESE 0x00N2 00 H
L= Extemal Clock Enabled o & PTFSE Dx0042 0l H
+| Decilator freouency [4.0 4.0MHz = PTGSE Dx0045 0l H
«| Extearal Clock Sounce |Exemal ozcilshor -| = ICGCH Dz0048 A4 H| L L 1]
| Wialiange 1MHz 16MHz -] = ICGC2 Ox0043 NH e
M= Clock. dividar Ao selected prescals |1 5 ICGS1 OxDD4A | D) H| #4888
Ho Imteiral bus dack a0 4.0MHz 5 ICGS2 w0046 DH essssses
He' Foued hequency clack |20 40MHz & ICGFLTU Ox004C NHeesssses
[FLL clock Digabled o # ICGFLTL (w040 lNH &SRS
“E Low-powes modes sc H ICGTRM xDD4E EH &S ed
UE| STOP instruction e/no - B GRS Dx1800 M H eSO
| Maskable CPU intesupts |inkemupls enabled |1 B S0PT Ox1802 fAH &% S8888
E| Intemal peripheralz = SDIDH 0x1305 NHesesses &
B| CPU intemuplts = SDIDL 0x1 507 CH st ees®
= SPMSCH 01803 LH s S8
B SPMSCZ 041804 | 00 H #® #®
5 NVBACKKEYD | O«FFBO FFH #aes888s
& NVBACKKEY1 | OxFFE1 fFH essesees
H HVBACKKEY?2 | DmFFB2 FEH #8888 8aS
© NYBACKKEY3 | OxFFB3 | FFH *sseeees
5 NVBACKKEY4 | OwFFB4 | FFH S8 88888
5 NYBACKKEYS | DxFFBS FFH ##S2888 &
= MVBACKKEYE | OxFFBE FFH # S #2888 &
|5 NVBACKKEY? | OxFFE7 FFuiesssseese |
Qe 2l sox | Ko
1. Goto Clock settings...Internal Oscillator Frequency and establish the frequency to 250 kHz
2. Goto Clock settings...Source CPU Clock and select Internal Clock
3. PressOK
4. Click inthe SCIx module (x stands for the number of the device)

Example Code and Explanation
This example code shows initializing the SCI module to 19200 baud rate on the MC9S08GB60.

Open CodeWarrior version 5.0

Create anew project in C
Select MC9S08GB60 under the derivative list in the HCS08 derivative.
Under Rapid Application Development options, select Device Initialization
Select CPU package from the list
Click in the CPU module

Using the Device Initialization for the HCS08 Family Microcontrollers

Freescale Semiconductor

h o
g |

Example Code and Explanation

- x|
Bean Parameters Register Details

| Device SCi e EER - Mame Address | Inilvalue |Register Map
El| Sellings | | B SCIBOH Ox00IE 00 M) & &e
|E| Clock setting | & SCNBDL (1111 1) o0 H| *e &

[."{ Baud rate dazor 13 | # sCnc LI101) P (]

U Bowd rate 19230764 bawd H SCnce Ox01 B 2L H * &%
H+ | Loop mode Drizablesd B SCIS1 Ox0O1C ClH s SBa888
M+ Recaher souce Laog mode - E SCIs2 0x001D IH SRS ES
He | TD pin diraction Iripat =| B SCIIC2 0x001E DH *® &
H+ Crata Fommal & btz -| B SCHD Dx001F MH*eeeesad
Fla | Shop in Wil made Drizabled |
M+ wake up el e veaksup =l
ri=l Idle chaiacher counling Alter el bt :I
Fl+ Parily Home: |
[« Sendbreak Disabled o4
“|v | Recaiver wakoup MNeemal apeiation -|
H| Pine
Bl Intemapts
FE Tz interrupt
FE Rx interrupl

oot Magile | Vel

| Freceive irteirupt Encbled o

| I b inkermupt [isabled o

o] ISR name Mscaly s
|E Emor interrupt
Hl| Initialization

+ | Tranzmitter Enzbled |

« | Fecaiver Enablad 2|

{8 Disable Peripheial lrilizization | E ﬂ _?I o 0K | X Cancel |

1. Go to the section Settings...Clock Setting and change the baud rate divisor to 13. (Thiswill lead
to aresult of a19230.769 baud rate with a 0.16% of error)

2. Goto Interrupts...Rx Interrupt; enable Receive Interrupt and set aname to ISR for the Receive.
3. Goto Initidization and enable Transmitter and Receiver.

4. PressOK

5. Press Generate Code

6. Select the Generated File type, in this case C callable and Save and add files to project option.
7. Press Generate

8.

Thiswill generate two pieces of code, one has the method declaration and the other isthe
MCU_Init function where all the needed on-chip peripherals are initialized.

9. Include the MCUInit.h in the main file using the command:
#include "MCuUinit.h"

10. Call the MCU_Init (included in the MCUinit.c) function:
MCU _init();

Using the Device Initialization for the HCS08 Family Microcontrollers

Freescale Semiconductor 9

h

Example Code and Explanation

lgmainc

b-{}-M- - o'~ Path |DZ"~F'eri|ES"\rgd|:|4l3"\M_',' DocumentshGonzaloiWwillyshD hepziepzhS o

#include <hidef h: ~#* for Enablelnterrupts macro *

#include "derivative h" % include peripheral declarations =7
|#include "HCUinit.h"|

’Amld_m.mnim" . id) 1
MCU _init();

Enablelnterrupts; % enable interrupts *-

<% include yvour code here #*-7

for{::) 4
_ RESET WATCHDOG(): «#* fesd=s the dog *-
P % loop forever
<% pleaze malke sure that vou never leave this function =7

* Place your code into the main or into the interrupt function located in the MCUInit.c under the
Generated Code directory.

NOTE

This example was devel oped using the CodeWarrior Development Studio
for Freescale HC(S)08 version 5.0, and was expressly made and tested for
the MC9S08GB60. Changeswill be required before the code can be used to
initialize another MCU. Every microcontroller requires an initialization
code that depends on the application and the microcontroller itself.

Using the Device Initialization for the HCS08 Family Microcontrollers

10 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Low Voltage Detect System for
the HCS08 Family Microcontrollers

by: Andrés Barrilado Gonzalez
RTAC Americas

México 2005
1 Ove rview Table of Contents
1 Overview., 11
Thisisaquick referencefor using thelow voltagedetect 2 Code Example and Explanation 12
(LVD) system on an HCS08 microcontroller (M CU). 3 Hardware Implementation. 13

Basic information about the functional description and
configuration optionsis provided. The following
examples may be modified to suit your application —
refer to the data sheet for your device.

LVD Quick Reference

The LVD function registers are device dependent. Please see the data sheet for your device to check
availability / location for these bits. For example, on some devices, the low voltage warning bits are moved
to another register (SPMSC3), and there is a PDF (power-down flag) in bit 4 of SPMSC2.

SPMSC1 | LVDF LVDACK' LVDIE ' LVDRE | LVDSE = LVDE | BGBE
System power management status and control register 1
LVDF — flags low-voltage detections LVDSE — enables/disables the LVD in stop
LVDACK — clears the LVD flag mode
LVDIE —enables/disables LVD-caused interruptions LVDE — enables/disables the LVD module
LVDRE — enables/disables LVD-caused resets BGBE — bandgap buffer enable

(not available on all devices — check your
data sheet)

SPMSC2 | LVWF :LVWACK: LVDV : LVWV PPDF:PPDACK: PDC : PPDC‘
System power management status and control register 2

LVWF — flags low-voltage warnings PPDF — partial power-down flag
LVWACK — clears the low voltage warning flag PPDACK — partial power-down acknowledge
LVDV —selects between high or low low-voltage PDC — power-down control

detect trip point voltage PPDC — partial power-down control

LVWV — selects between high or low low-voltage
warning trip point voltage

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

The following example configures the LV D using the interrupt-based approach to turn on an LED while
voltage levels are low. It also polls the low-voltage warning flag to turn on a second LED in case the
low-voltage level is approaching.

The zip contains the following functions:

* main— pollsthe low-voltage warning flag endlessly and movesthe result to aMCU pin where an
LED is attached

* MCU_init — Configures hardware and the LV D module to accept interrupts and sets the
LVD/LVW trip voltages

e Vlvd isr — Respondsto LVD interruptions.

Using Device Initiaization, the LVD configuration applied for this exampleis:
* LVD interrupt enabled
» High low-voltage detect trip voltage
* Highlow-voltage warning trip voltage
» Noreset in case of low-voltage detection
* No low-voltage detection in STOP mode

Please refer to the code for specifics about the configuration.

After the LVD is configured, and if alow voltage level is detected, a service routine must clear the LVD
flag by setting the acknowledge bit. In this example, abit isalso set at aMCU pin in order to turn on a
warning LED.

__interrupt void Vl1vd_isr (void) {

PTFD_PTFD2 = 0x00; /* Turn on PTF2 (and keep it on) */
SPMSC1 \: 0x40; /* Acknowledge LVD and clear the flag */
}

Please refer to the source code for more details.

NOTE

This software was devel oped using the CodeWarrior Development Studio
for HC(S)08 version 5.0 using Device Initialization and tested using a
MC9S08GB60 running in self-clocked mode. Coding changes may be
needed to initialize another MCU. Every microcontroller needs an
initialization code that depends on the application and the microcontroller
itself.

Using the Low Voltage Detect System for the HCS08 Family Microcontrollers

12 Freescale Semiconductor

PR 4

Hardware Implementation

3 Hardware Implementation

This schematic shows the hardware used to exercise the code provided.

U
o 43 § .]
7| FTADMKEIPD PTCOTOZ [0
O3z FTALKEIPT PTC1/R%DZ a0
O—3=| FTAZHEIFZ Czs0Aa [0
O—7 FTAZKEIFS PTCH/ECL [0
O—57—| FTA4/HEIPY FTC4 g0
O—=— FTASKEIFS FTCS [0
D—z5| PTAG/HEIPS PTCE 5O
O—="— FTAT/KBIFT ETOT i
ZR
D—ﬁ FTENADD PTOOTPMICHD [F55—0
03z PTB1/ADT FTDUTFMICHT 50
O—55| FTBZ/ADZ PTOZTPMICHZ [55—0 VoD
Oy | FTBXAD3 FTD3TFMICHD 550
O—5| FTE4/A04 FTD4TFMICH! [F55—0
O—5=| FTBS/ADS PTOSTPMICHZ [0
O—35| FTBS/ADS PTO&TPMZCHI 550
b——| PTE7/ADT FTDT/TRMICHS =0 oz o1
D"—% FTEVBKEDMS PTEDTxD ':: 0 ! LED ! LED
=] PTG1ATAL FTE1/RxD1 [5—0 » %
1| FTGZEXTAL PTEZES g0
Rt O FTG2 FTEIMISD 50
O—25 FTG4 PTE4/MOSI [=5—0 - -
S — O FTGE FTEE/SPECK (50 - :
M VDD O—— PTGE FTES 55O 470 4T0
'::f' = < PTGT PTET | 2 M
VI | "
. N
T _ L N e I8
el s . -
‘ |:|I__‘ [T faE T onr 53] Vid PTFZ 3
Wss FTF3 33 |
|
Y1 = FTF4 45
1 1 - E |
G G 41 FTFS 3%
3z PTFE 4z o
J 5 FTFT ——O
&7
— 5= 1| ==mp - g
C—j_— RESET IR =0

5 MCIS0EEE60

5 uF

Using the Low Voltage Detect System for the HCS08 Family Microcontrollers

Freescale Semiconductor 13

Hardware Implementation

Using the Low Voltage Detect System for the HCS08 Family Microcontrollers

14 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Internal Clock Source (ICS) for
the HCS08 Microcontrollers

by: Sergio Garcia de Alba Garcin
RTAC Americas
México 2005

1 Overview

Table of Contents

o)]) 1T Overview. i 15
Thisisaquick reference for using the internal clock 2 Code Example and Explanation 16
source (ICS) module on an HCS08 microcontroller 2; E:::: gngageddEétfma' lEE><amP'€|> --------- 13

P . . . ypasse Xternal example.
(M CU) Basic mformatlon_ about _the anCt' Or?al 2.3 FLL Bypassed External Low Power
description and configuration optionsis provided. The EXAMPIE. « .o v e et 18
following examples may be modified to suit your 2.4 FLL Bypassed Internal Example 19
application — refer to the data sheet for your device. 25 Et';n'fmassed Internal Low Power 20
2.6 FLL Engaged Internal Example 20
3 Tips and Recommendations................ 21

ICS Quick Reference

ICSC1 ‘ CLKS RDIV : IREFS : IRCLKEN :IREFSTEN‘
Module and internal oscillator configuration
IcCSC2 \ BDIV ' RANGE : HGO LP : EREFS : ERCLKEN :EREFSTEN‘
Module and external oscillator configuration
ICSTRM | TRIM |
Internal oscillator trim value: higher value = slower frequency
ICSSC | ! ! ' CLKST "OSCINIT FTRIM |

Module status

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved.

Fine trim value

freescale"

semiconductor

|
y

'
A

Code Example and Explanation

2 Code Example and Explanation

The ICS provides several options for clock sources. This offers great flexibility when having to choose
between precision, cost, current consumption, and performance. The weight of each one of these factors
will depend on the requirements and characteristics of the application being devel oped.

2.1 FLL Engaged External Example

Our first example will be configuring the microcontroller for FLL engaged external (FEE) mode using a
4.9152 MHz crystal as an external clock reference. Using this mode we can have a bus frequency in the
rangeof 1 MHz < f}, ,s< 10 MHz, high clock accuracy, and medium/high cost (because acrystal, resonator,
or external oscillator is required).

The bus frequency that will be generated is calculated with the following formula:
fous = (fext = RDIV x 512 + BDIV) + 2

Wherefg,; isthe frequency of the external reference (in this example we assume a4.9152 MHz crystdl is
being used). RDIV bits must be programmed to divide f, to be within the range of 31.25 kHz to
39.0625 kHz (in this example they divide f, by 128). Then the FLL multipliesthe frequency by 512, and
BDIV bitsdivideit (in this example they are programmed to divide by 2). Finally, the clock signal is
divided by 2 to give the bus clock.

In our example fy, s will be: 4.9152 MHz. For this example HGO was programmed to configure the
external oscillator for low power operation (reduced amplitude).

The ICS control registers will be programmed in the following way:

ICSC1 = 0x38

Bits 7:6 CLKS 00 Output of FLL is selected

Bits 5:3 RDIV 111 Divides reference clock by 128

Bit 2 IREFS 0 External reference clock selected

Bit 1 IRCLKEN 0 ICSIRCLK inactive

Bit 0 IREFSTEN 0 Internal reference clock disabled in stop

ICSC2 = 0x64

Bits 7:6 BDIV 01 Set to divide selected clock by 2

Bit 5 RANGE 1 High frequency range selected for the external oscillator
Bit 4 HGO 0 Configures external oscillator for low power operation
Bit 3 LP 0 FLL is not disabled in bypass mode

Bit 2 EREFS 1 Oscillator requested

Bit 1 ERCLKEN 0 ICSERCLK inactive

Bit 0 EREFSTEN 0 External reference clock disabled in stop

Using the Internal Clock Source (ICS) for the HCS08 Microcontrollers

16 Freescale Semiconductor

Code Example and Explanation

The following piece of code in C would set this configuration:

ICSC2= 0x64;
while (ICSSC_OSCINIT==0) ;

ICSCl= 0x38; // Best practice is to enable external clock, then switch to FEE mode

NOTE

Thewhileloop is used to wait for the initialization cycles of the external
crystal to complete.

2.2 FLL Bypassed External Example

Thistime, we will configure the microcontroller to work in FLL bypassed external mode (FBE) using a
4.9152 MHz crystal as areference. This mode allows for a bus frequency in the range 2 kHz < f, 5

< 2.5 MHz, very high clock accuracy, low power consumption, and medium/high cost (because acrystal,
resonator, or external oscillator isrequired).

The bus frequency that will be generated is calculated with the following formula:
fous = (fext * 1/BDIV) / 2

Where f,; iSthe frequency of the external reference (in this example we assume a4.9152 MHz crystal is
being used). RDIV bits must be programmed to divide f, to be within the range of 31.25 kHz to
39.0625 kHz (in this example they divide g, by 128).

In our example, fi, ,swill be: 1.228 MHz. In this example we programmed HGO to configure the external
oscillator for high gain to provide higher amplitude for improved noise immunity.

The ICS control registers will be programmed in the following way:

ICSC1 = 0xB8

Bits 7:6 CLKS 10 External reference clock is selected

Bits 5:3 RDIV 111 Divides reference clock by 128

Bit 2 IREFS 0 External reference clock selected

Bit 1 IRCLKEN 0 ICSIRCLK inactive

Bit 0 IREFSTEN 0 Internal reference clock disabled in stop

ICSC2 = 0x74

Bits 7:6 BDIV 01 Set to divide selected clock by 2

Bit 5 RANGE 1 High frequency range selected for the external oscillator
Bit 4 HGO 1 Configures external oscillator for high gain operation
Bit 3 LP 0 FLL is not disabled in bypass mode

Bit 2 EREFS 1 Oscillator requested

Bit 1 ERCLKEN 0 ICSERCLK inactive

Bit 0 EREFSTEN 0 External reference clock disabled in stop

Using the Internal Clock Source (ICS) for the HCS08 Microcontrollers

Freescale Semiconductor

17

Code Example and Explanation

The following piece of code in C would set this configuration:

ICSC2= 0x74;
while (ICSSC_OSCINIT==0) ;
ICSCl= 0xBS8; //Best practice is to enable external clock, then switch to FBE mode

NOTE

Thewhileloop is used to wait for the initialization cycles of the external
crystal to complete.

2.3 FLL Bypassed External Low Power Example

Thismodeisvery similar to FLL bypassed external mode (FBE), with the differencethat the FLL isturned
off to reduce power consumption. For this example, wewill al'so use a4.9152 MHz crystal asareference.
This mode allows for a bus frequency fy, s <= 10 MHz, very high clock accuracy, very low power
consumption, and medium/high cost (because a crystal, resonator, or external oscillator is required).

The bus frequency that will be generated is calculated with the following formula:
fous = (fext * 1/BDIV) / 2

Where f,; iSthe frequency of the external reference (in this example we assume a4.9152 MHz crystal is
being used). Although this FLL will be disabled in this example, it is best practice to set the RDIV bitsto
divide foy to be within the range 31.25 kHz to 39.0625 kHz (in this example, fo,; is divided by 128).

In our example, f, ,sWill be: 2.457 MHz. For this example, HGO was programmed to configure the
external oscillator for low power operation (reduced amplitude).

The ICS control registers will be programmed in the following way:

ICSC1 = 0x80
Bits 7:6 CLKS 10 External reference clock is selected
Bits 5:3 RDIV 111 Divides reference clock by 128
Bit 2 IREFS 0 External reference clock selected
Bit 1 IRCLKEN 0 ICSIRCLK inactive
Bit 0 IREFSTEN 0 Internal reference clock disabled in stop
ICSC2 = 0x2C
Bits 7:6 BDIV 00 Set to divide selected clock by 1
Bit 5 RANGE 1 High frequency range selected for the external oscillator
Bit 4 HGO 0 Configures external oscillator for low power operation
Bit 3 LP 1 FLL is disabled in bypass mode (unless BDM is active)
Bit 2 EREFS 1 Oscillator requested
Bit 1 ERCLKEN 0 ICSERCLK inactive
Bit 0 EREFSTEN 0 External reference clock disabled in stop
Using the Internal Clock Source (ICS) for the HCS08 Microcontrollers
18 Freescale Semiconductor

The following piece of code in C would set this configuration:

ICSC2= 0x2C;
while (ICSSC_OSCINIT==0) ;
ICsSCl= 0x80;

NOTE

Code Example and Explanation

// Best practice is to enable external clock then switch to FBELP mode

Thewhileloop is used to wait for the initialization cycles of the external

crystal to complete.

2.4 FLL Bypassed Internal Example

In this example, the microcontroller will be configured to operate in FLL bypassed internal mode (FBI).
This mode allows a bus frequency in the range 2 kHz < f, s < 19 kHz, low cost, and good accuracy (if

trimmed).

The bus frequency that will be generated is calculated with the following formula:

fous = (firc* 1/BDIV) /2

Where fj, is the frequency of the internal reference clock (in this example we assume 32.768 kHz).

In our example f s will be: 8.19 kHz.

The ICS control registers will be programmed in the following way:

ICSC1 = 0x44

Bits 7:6 CLKS 01 Internal reference clock is selected

Bits 5:3 RDIV 000 Divides reference clock by 1

Bit 2 IREFS Internal reference clock selected

Bit 1 IRCLKEN 0 ICSIRCLK inactive

Bit 0 IREFSTEN 0 Internal reference clock disabled in stop

ICSC2 = 0x40

Bits 7:6 BDIV 01 Set to divide selected clock by 2

Bit 5 RANGE 0 Low frequency range for the external oscillator
Bit 4 HGO 0 Configures external oscillator for low power operation
Bit 3 LP 0 FLL is not disabled in bypass mode

Bit 2 EREFS 0 External clock source requested

Bit 1 ERCLKEN 0 ICSERCLK inactive

Bit 0 EREFSTEN 0 External reference clock disabled in stop

The following piece of code in C would set this configuration:

ICSCl= Ox44;| // If switching from FEE, FBE, or FBELP into FBI, delay for a time equal to tIRST
ICSC2= 0x40;

Using the Internal Clock Source (ICS) for the HCS08 Microcontrollers

Freescale Semiconductor

19

Code Example and Explanation

2.5 FLL Bypassed Internal Low Power Example

Thismodeisvery similar to FLL bypassed internal mode (FBI), with the difference that the FLL isturned
off to reduce power consumption. This mode allows for a bus frequency in the range 2 kHz < f, 5
< 19 kHz, low cogt, very low power consumption, and good accuracy (if trimmed).

The bus frequency that will be generated is calculated with the following formula:

fous = (fire * YBDIV) / 2

Where fj, is the frequency of the internal reference clock (in this example we assume 32.768 kHz).
In our example, fi, g will be: 16.38 kHz.

The ICS control registers will be programmed in the following way:

ICSC1 = 0x44

Bits 7:6 CLKS 01 Internal reference clock is selected

Bits 5:3 RDIV 000 Divides reference clock by 1

Bit 2 IREFS 1 Internal reference clock selected

Bit 1 IRCLKEN 0 ICSIRCLK inactive

Bit 0 IREFSTEN 0 Internal reference clock disabled in stop

ICSC2 = 0x08

Bits 7:6 BDIV 00 Set to divide selected clock by 1

Bit 5 RANGE 0 Low frequency range for the external oscillator

Bit 4 HGO 0 Configures external oscillator for low power operation
Bit 3 LP 1 FLL is disabled in bypass mode (unless BDM is active)
Bit 2 EREFS 0 External clock source requested

Bit 1 ERCLKEN 0 ICSERCLK inactive

Bit 0 EREFSTEN 0 External reference clock disabled in stop

The following piece of code in C would set this configuration:

ICSCl= 0x44; //If switching from FEE, FBE, or FBELP into FBILP, delay for a time equal to tIRST
ICSC2= 0x08;

2.6 FLL Engaged Internal Example

In this example, we will use the microcontroller in FLL engaged internal mode (FEI), which isthe default
mode of operation for the ICS module. When this mode is entered out of reset the bus frequency will
default to approximately 4.1943 MHz.

This mode allows for a bus frequency in the range 1 MHz < f,, s < 10 MHz, low cost, quick and reliable
system startup, and good accuracy (if trimmed).

In our example, fi, ,sWill be around 4.1943 MHz, which isthe default frequency after reset. To operate in
FLL engaged internal mode (FEI) no register needs to be written if the default settings are suitable. If
required, the default configuration can be changed. For instance, the internal reference clock could be

Using the Internal Clock Source (ICS) for the HCS08 Microcontrollers

20 Freescale Semiconductor

Tips and Recommendations

trimmed writing the ICSTRM register or the bus frequency could be reduced by changing the BDIV bits
in the ICSC2 register.

The internal reference must be trimmed to less than 39.0625 kHz before BDIV is set for divide by 1.

3

Tips and Recommendations

When ICS s configured for FEE or FBE mode, input clock source must be divisible using RDIV
to within the range of 31.25 kHz to 39.0625 kHz.

Check the external and internal oscillator characteristics in the data sheet for el ectrical and timing
specifications.

The external oscillator can be configured to provide a higher amplitude output for noise
immunity. This mode of operation is selected by HGO = 1.

When switching modes of operation, if the newly selected clock is not available, the previous
clock will remain selected.

The TRIM and FTRIM value will not be affected by a reset.

When using an XTAL (crystal) be sure to use high quality components (XTAL, resistors, and
capacitors). Use low inductance resistors such as carbon composition resistors. Capacitors must
be high quality ceramic capacitors specifically designed for high frequency applications. If using
aresonator, be sure to use a high-quality resonator.

For the values of the components used with the XTAL or resonator, consult the manufacturer or
the device's data sheet (typical values are: C1 and C2 in the range of 5 pF to 25 pF, Rg in the
range 1-10 MQ, Rgin the range of 0-100 kQ2). Take into consideration stray capacitance when
sizing C1 and C2.

Good layout practices are fundamental for correct operation and reliability of the oscillator
(crystal or resonator). Have the oscillator’s components very close to the XTAL and EXTAL pins
to minimize the length of the routing traces. Avoid high frequency/current signals near the
oscillator to prevent crosstalk and to minimize noise, €etc.

Freescal e recommends an evaluation of the application board and chosen resonator or crystal by
the resonator or crystal manufacturer.
NOTE

* This software was developed using the CodeWarrior Development
Studio for HC(S)08 version 5.0 using Device Initialization.

* A small project isincluded that was tested in the MC9S08QG8 that
configures the microcontroller as described in the previous examples
depending on which define# is not commented. An LED blinks at a
frequency which depends on the ICS mode of operation selected.

Using the Internal Clock Source (ICS) for the HCS08 Microcontrollers

Freescale Semiconductor 21

Tips and Recommendations

Using the Internal Clock Source (ICS) for the HCS08 Microcontrollers

22 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Internal Clock Generator (ICG)
for the HCS08 Family Microcontrollers

by: Sergio Garcia de Alba Garcin

RTAC Americas
México 2005
i Table of Contents
1 Overview
1 Overview., 23
Thisisaquick reference for using the internal clock 2 Code Example and Explanation 24
generator (ICG) module on an HCS08 microcontroller 2.1 FLL Engaged External Example 24
.. . . 2.2 FLL Engaged Internal Example.......... 25
(M CU) Basic mformatlon_ about _the fgnctloqal 2.3 FLL Bypassed External Example. 26
description and configuration optionsis provided. The 2.4 Self-Clocked Mode Example 27
followi ng exarnp|es may be modified to suit your 3 Tips and Recommendations. 27
application — refer to the data sheet for your device.
ICG Quick Reference
ICGC1 | ' RANGE | REFS | CLKS OSCSTEN : |
RANGE — FLL frequency range CLKS — clock mode select
REFS — reference clock select OSCSTEN — oscillator stop enable
ICGC2 \ LOLRE : MFD \ LOCRE : RFD ‘
LOLRE — loss of lock reset LOCRE — loss of clock reset
MFD — multiplication factor RFD — reduced frequency divider
ICGS1 \ CLKST : REFST: LOLS \ LOCK : LOCS : ERCS : ICGIF \
CLKST — module mode status LOCK — current lock status
REFST — status of reference clock LOCS — loss of clock status
LOLS — loss of lock status ERCS — external reference clock
ICGIF — interrupt flag
IcGS2 | : : : | : : | DCOS |
DCOS — DCO clock stable
ICGFLTU | : : | | FLT |
ICGFLTL | FLT |
FLT[11:0] — DCO frequency control
ICGTRM ‘ TRIM |
TRIM[7:0] — internal reference clock trim setting
© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

The ICG provides severa options for clock sources. This offers great flexibility when having to choose
between precision, cost, current consumption, and performance. The weight of each one of these factors
will depend on the requirements and characteristics of the application being developed.

2.1 FLL Engaged External Example

Our first example will be configuring the microcontroller for FLL engaged external (FEE) mode using a
32 kHz crystal as an external clock reference. Using this mode we can have a bus frequency in the range
of 0.03 MHz < f, ;s < 20 MHz, good clock accuracy, and medium/high cost (because a crystal, resonator,
or external clock isrequired).

The bus frequency that will be generated is calculated with the following formula:
fous = (Fet X PX N+R) + 2

Where fq; is the frequency of the external reference (in this example we assume a 32.768 kHz crystal is
being used). P depends on the value of the RANGE bit, because we areusing acrystal inthelow-frequency
range P = 64 (if RANGE = 1 then P=1). N and R are the multiplication and division factors determined
by bits MFD and RFD in ICGC2.

In our example, wewill program N/R = 4, therefore fy, s will be: 4.19 MHz. The ICG control registerswill
be programmed in the following way:

Table 1. ICG Control Register Settings for FEE Mode

ICGCA1

Bit 7 HGO* 0 Configures oscillator for low power operation

Bit 6 RANGE 0 Configures oscillator for low frequency range (FLL prescale factor P = 64)
Bit 5 REFS 1 Oscillator using crystal or resonator is requested

Bits 4:3 CLKS 11 FLL Engaged External mode requested

Bit 2 OSCSTEN 0 Oscillator disabled in STOP mode

Bit 1 LOCD* 0 Loss of clock detection enabled

Bit 0 0 Unimplemented or reserved

*Only available in MC9S08AW, for MC9S08GB/GT always write zero

ICGC2
Bit 7 LOLRE 0 Generates an interrupt request on loss of lock
Bits 6:4 MFD 000 Sets the MFD multiplication factor to 4 (N)
Bit 3 LOCRE 0 Generates an interrupt request on loss of clock
Bits 2:0 RFD 000 Sets the RFD division factor to 1 (R)
Using the Internal Clock Generator (ICG) for the HCS08 Family Microcontrollers
24 Freescale Semiconductor

Code Example and Explanation

The following piece of code in C would set this configuration:

ICGC2=0x00;

ICGC1=0x38; //Best practice is to set MFD/RFD, then enable FEE
while (ICGS1_LOCK==0) ;

while (ICGS2_DCO0OS==0) ; //Optional

NOTE
The while loop is used to pause execution until the FLL has locked. For time
critical tasks an additional while loop could be included to wait for
DCOS = 1.

2.2 FLL Engaged Internal Example

Thistime, we will configure the microcontroller to work in FLL engaged interna (FEI) mode. The
reference used will be the internal 243 kHz reference clock. This mode allows for a bus frequency in the
range 0.03 MHz < fy,s < 20 MHz, medium clock accuracy (if IRG has been trimmed), and the lowest cost
(because it requires no external components).

The bus frequency that will be generated is calculated with the following formula:
fous = (flrg + 7) X PX N/R) + 2

Wheref,rg isthe frequency of theinternal reference generator (approximately 243 kHz). In thismode the
FLL prescalefactor Pisalways64. N and R are the multiplication and division factors determined by bits
MFD and RFD in register ICGC2.

We will program N/R = 2, therefore f, s will be: 2.221 MHz.
The ICG control registerswill be programmed in the following way:

Table 2. ICG Control Register Settings for FEI Mode

ICGCH1

Bit 7 HGO* 0 Configures oscillator for low power operation; (don’t care)

Bit 6 RANGE 0 Configures oscillator for low frequency range; (don’t care)

Bit 5 REFS 1 Oscillator using crystal or resonator is requested; (don’t care)
Bits 4:3 CLKS 01 FLL engaged internal mode requested

Bit 2 OSCSTEN 0 Oscillator disabled in stop mode

Bit 1 LOCD* 0 Loss of clock detection enabled

Bit 0 0 Unimplemented or reserved

*Only available in some MCUSs, for other devices, always write zero (see the data sheet for your device)

ICGC2

Bit 7 LOLRE 0 Generates an interrupt request on loss of lock
Bits 6:4 MFD 000 Sets the MFD multiplication factor to 4 (N)

Bit 3 LOCRE 0 Generates an interrupt request on loss of clock
Bits 2:0 RFD 001 Sets the RFD division factor to 2 (R)

Using the Internal Clock Generator (ICG) for the HCS08 Family Microcontrollers

Freescale Semiconductor 25

Code Example and Explanation

The following piece of code in C would set this configuration:

ICGC2=0x01;
ICGC1=0x28;
while (ICGS1_LOCK==0) ;
while (ICGS2_DCOS==0) ;

//Best practice is to set MFD/RFD, then enable FEI

//Optional

NOTE
Thewhileloop isused to pause execution until the FLL haslocked. For time
critical tasks an additional while loop could be included to wait for
DCOS=1.

2.3 FLL Bypassed External Example

Now wewill configure the microcontroller towork in FLL bypassed external (FBE) mode using a32 kHz
crystal as areference. This mode allows for a bus frequency <= 8 MHz (up to 20 MHz if using external
oscillator), highest clock accuracy, lowest power consumption, and medium/high cost (because crystal,
resonator, or external clock is required).

The bus frequency that will be generated is calculated with the following formula:
fous = Fext X UR) + 2

Where fq; is the frequency of the external reference (in this example we assume a 32,768 kHz crystal is
being used).

In our example f, s Will be: 16.384 kHz.
The ICG control registers will be programmed in the following way:

Table 3. ICG Control Register Settings for FBE Mode

ICGCH1

Bit 7 HGO* 0 Configures oscillator for low power operation

Bit 6 RANGE 0 Configures oscillator for low frequency range (FLL prescale factor P = 64)
Bit 5 REFS 1 Oscillator using crystal or resonator is requested

Bits 4:3 CLKS 10 FLL Bypass External mode requested

Bit 2 OSCSTEN 0 Oscillator disabled in STOP mode

Bit 1 LOCD* 0 Loss of clock detection enabled

Bit 0 0 Unimplemented or reserved

*Only available in some MCUSs; for others, always write zero (refer to the data sheet for your device).

ICGC2
Bit 7 LOLRE 0 Generates an interrupt request on loss of lock (don’t care)
Bits 6:4 MFD 000 Sets the MFD multiplication factor to 4 (N); (don’t cares)
Bit 3 LOCRE 0 Generates an interrupt request on loss of clock
Bits 2:0 RFD 000 Sets the RFD division factor to 1 (R)
Using the Internal Clock Generator (ICG) for the HCS08 Family Microcontrollers
26 Freescale Semiconductor

Tips and Recommendations

The following piece of code in C would set this configuration:

ICGC2=0x00;
ICGC1=0x30;
while (ICGS1_ERCS==0);

NOTE
Thewhileloop isused to pause execution until the external reference clock
is stable and meets the minimum frequency requirement.

2.4 Self-Clocked Mode Example

In this example we will use the microcontroller in self-clocked mode (SCM). Thisis the default mode of
operation for the ICG module. When this mode is entered out of reset, the bus frequency will default to
approximately 4 MHz.

Thisisthe only mode in which the filter registers (ICGFLT) can be written. The default value of the
ICGFLT registersis 0x0OCO. Writing a higher value will increase the bus frequency, while alower value
will decrease the bus frequency.

This mode allows for a bus frequency in the range 3 MHz < f,, s < 20 MHz (viafilter bits), quick and
reliable system startup, and poor accuracy.

In our example f, s will be around 20 MHz.

To operate in SCM no register needs to be written, however in this example we will write ICGFLTU and
ICGFLTL to increase the bus frequency (by writing ICGFLT we modify ICGFLTL and the four least
significant bits of ICGFLTU. The other four bits are unimplemented).

The following piece of code in C would modify the FLT registers:

ICGFLT=0x0800;

The bus frequency could be reduced by changing the RFD division factor in the ICGC2 register.

3 Tips and Recommendations

* Becareful when writing to the ICGC1 register because bits RANGE and REFS are write-once
after reset. Also, if thefirst write after reset sets CLKS = 0x (SCM, FEI) the CLKS bits cannot be
written to 1x (FEE, FBE) until after the next reset (because the EXTAL pin was not reserved).

e For minimum power consumption and minimum jitter, choose N and R to be as small as possible
when operating in FEE or FEI modes.

* When operating in FEE mode and using a crystal or resonator, make sure its frequency isin the
specified range of 32 kHz — 100 kHz for RANGE =0, or 2 MHz — 10 MHz for RANGE = 1.

* When operating in FBE mode and using a crystal or resonator, make sure its frequency isin the
specified range of 32 kHz — 100 kHz for RANGE =0, or 1 MHz — 16 MHz for RANGE = 1.

» Theoscillator can be configured to provide a higher amplitude output for noise immunity. This
mode of operation is selected by HGO = 1 (only available on some MCUs — see the data sheet
for your device).

Using the Internal Clock Generator (ICG) for the HCS08 Family Microcontrollers

Freescale Semiconductor 27

|
y

'
A

Tips and Recommendations

To avoid long oscillator startup times when exiting stop mode, you can program OSCSTEN =1,
this way the oscillator will remain enabled in stop mode (ICG in off mode). The disadvantage is
higher current consumption in STOP mode.

When operating in FEI, trim the internal reference generator. Increasing the valuein the ICGTRM
register will increase the period and decreasing the value will decrease the period. For adetailed
explanation of the trim procedure, please refer to application note AN2496.

Two very useful bitsare LOLRE and LOCRE. They configure whether areset or an interrupt will
be generated in the events of aloss of lock (LOLRE) and of aloss of clock (LOCRE).

When using an XTAL (crystal) be sure to use high-quality components (XTAL, resistors, and
capacitors). Uselow inductance resistors such as carbon-composition resistors. Capacitors should
be high-quality ceramic capacitors specifically designed for high-frequency applications. If using
aresonator, be sure to use a high quality resonator.

For the values of the components used with the XTAL or resonator, consult the manufacturer or
the device's data sheet (typical values are: C1 and C2 in the range of 5 pF to 25 pF, Rg in the
range 1 — 10 MQ, Rgin the range of 0 — 10 kQ). Take into consideration stray capacitance when
sizing C1 and C2.

Good layout practices are fundamental for correct operation and reliability of the oscillator
(crystal or resonator). Try to have the oscillator’s components very near to the X TAL and EXTAL
pins to minimize the length of the routing traces. Avoid high-frequency/current signals near the
oscillator to prevent crosstalk and to minimize noise, etc.

Freescale recommends an evaluation of the application board and chosen resonator or crystal by
the resonator or crystal manufacturer.

We recommend writing to ICGC2 before ICGCL. This sets the multiplier before enabling the
FLL.

NOTE

This code was developed using the CodeWarrior Development Studio for
HC(S)08 version 5.0 using Device Initiaization.

Using the Internal Clock Generator (ICG) for the HCS08 Family Microcontrollers

28

Freescale Semiconductor

Freescale Semiconductor
Users Guide

Programming the Low-Power Modes on
HCS08 Microcontrollers

by: Gabriel Sanchez Barba
Gonzalo Delgado
RTAC Americas
México 2005

1 Overview

Thisisaquick reference for using the low-power modes
on an HCS08 microcontroller (MCU). Basicinformation
about the functional description and configuration
options is provided. The following examples may be
modified to suit your application — refer to the data
sheet for your device.

Freescale’sHCS08 microcontrollersinclude several stop
modes that permit the user to achieve low power
consumption. This provides great flexibility and may be
used to provideideal conditionsfor many different types
of applications. The HCS08 MCUs support threet
different stop modes that may be entered when a stop
instruction is executed if the STOPE bit in the system
option register is set. If the STOPE bit is not set, then an
illegal opcode reset will be forced.

1. Not all stop modes are available on all devices. Refer to the data
sheet for your device.

—_

Table of Contents

Overview. 29
Code Example and Explanation 30
2.1 Important I/O Configuration Information ... 30
In-Depth Reference Material. 31
3.1 Stop3 Overview (PDC =0, PPDC =1 or 0). 31
3.2 Stop2 Overview (PDC =1,PPDC=1) 31
3.3 Stop1 Overview (PDC =1,PPDC=0) 31
Hardware Implementation. 32

Low Power Modes Quick Reference

The stop modes function uses device dependent registers. Please see the data sheet for your device to check
availability / location for these bits. For example, on some devices, the low voltage warning bits are moved
to another register (SPMSC3), and there is a PDF (power-down flag) in bit 4 of SPMSC2.

SOPT‘ COPE: COPT : STOPE : |

STOPE — enables the stop modes

SPMSCZ‘ LVWF :LVWACK: LVDV ' LVWV \ PPDF : PPDACK: PDC

| PPDC|

System power management status and control register 2

LVWF — flags low-voltage warnings

LVWACK — clears the low voltage warning flag

LVDV —selects between high or low low-voltage
detect trip point voltage

LVWV — selects between high or low low-voltage

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved.

PPDF — partial power-down flag

PPDACK — partial power-down acknowledge
PDC — power-down control

PPDC — partial power-down control

freescale"

semiconductor

|
y

'
A

Code Example and Explanation

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

It contains the following functions:

* main — Checksfor a stop2 recovery, and if so, enters stopl, otherwise, it enters stop3 and waits
for an external interrupt. After it receives an external interrupt, it services the interrupt routine,
and returns to the main loop where it enters stop2 and waits for another external interrupt. When
thisinterrupt occurs, the MCU will go through reset and see that it came out of stop2 and so
configures and entersitself into stopl.

* MCU_init — Configures MCU hardware, as well as the external interrupt.
» Delay — Thisisasimple loop routine.
* Virg_isr — Servicesthe IRQ pin interrupt.
Following these four simple steps, the user can enter any of the stop modes available on the device:

1. Setthe STOPE bit in SOPT to enable stop modes:
Thiswill enable stop instructions, otherwise, an illegal opcode reset will be forced.
2. Set up the SPMSC1 register:

This register sets up low-voltage detect. Low-voltage detect must be disabled to be able to enter
stop2 and stopl.

3. Set up al interrupts that will exit the MCU from stop mode.
Thisis needed so that the MCU may successfully exit stop modes by other means than just reset.
4. Check and set up SPMSC2 register.
There are two main purposes to this: (a) check partial power down flag, and (b) set up stop mode
to be used.

After these steps have been done, you may enter the stop modes in the MCU by executing a stop
instruction.

2.1 Important I/O Configuration Information

When the HCS08 goes into stop2 or stop3 mode, the content of its registers remain unchanged. In
particular, the ports keep their configuration. So, it isimportant to set the portsin a state that may not lead
to acurrent consumption increase at the application level. Software and hardware engineers should follow
these guidelinesin order to avoid additional current consumption:

» Do not leave any I/O configured as an unconnected inputs — instead, tiethem to Vpp or Vg, Or,
you can set unconnected 1/0 as output, thus forcing a steady level.

» The same recommendation appliesto unbonded 1/0 on small packages (on the package QFP44 vs.
LQFP64 for instance). In this case, set the unbonded 1/0 as output.

» Forinputswhose logic state is uncertain (for aHall-effect sensor signal, for instance), use externa
pullup or pulldown resistors instead of the internal ones that are weak (typically between 20 k<
and 50 kQ). Thisway, the power consumption is minimized in case the level of these inputs
changes during the low-power mode.

Programming the Low-Power Modes on HCS08 Microcontrollers

30 Freescale Semiconductor

In-Depth Reference Material

3 In-Depth Reference Material

The information in this section is provided as reference material for those who would like to learn more
about the stop modes in the HCS08 Family of MCUs.

3.1 Stop3 Overview (PDC =0, PPDC =1 or 0)

Thisis the same stop mode the 6BHCO08 Family of MCUs uses. The states of all of the internal registers
and logic are maintained. Because of this, 1/0 conditions are not affected by stop3 and do not have to be
re-initialized after exit. RAM ismaintained. All peripherals are disabled with the exception of the RTI (if
enabled). Stop3 can be exited using an external interrupt (IRQ), real-time interrupt (RTI), keyboard
interrupt (KBI), or alow-voltage warning (LVW) interrupt if enabled. RTI can use either its 1-kHz internal
clock or the external oscillator if it is enabled during stop. When waking from stop3 via an asynchronous
interrupt or the real-time interrupt, the MCU re-enters the program flow through the interrupt service
routine (ISR) and executes the next instruction after the stop. If stop3 is exited by means of the RESET
pin, the MCU will be reset and operation will resume after taking the reset vector.

3.2 Stop2 Overview (PDC =1, PPDC =1)

Thisisalower power mode than stop3. Stop2 can be entered only if the low-voltage detection is disabled.
I/Os are latched at the pin, but the states of the internal registers are lost during stop2. If the application
requires the I/O pin conditions to be maintained, the contents of the appropriate registers should be saved
to RAM. RAM ismaintained. All peripherals are disabled with the exception of the RTI. If using the RTI,
only the internal time base can be used because the internal oscillator circuitry is disabled in stop2. Stop2
can be exited using an external interrupt (IRQ), areal-timeinterrupt (RT1), or akeyboard interrupt 1(K BI).
When waking from stop2, no I SR codeis processed because the M CU re-enters the program flow through
the reset vector. The user must determine whether thisis a stop2 event or atrue power-on reset (POR) and
take appropriate action. All internal registers are set to their POR states. If the /0O pin conditions areto be
maintained, the appropriate registers can be restored from RAM before acknowledging the stop2
condition.

3.3 Stop1 Overview (PDC =1, PPDC = 0)

HCS08 devices that are designed for low voltage operation (1.8 V to 3.6 V) aso include stopl mode. The
stop mode to be entered is selected by setting the appropriate bits of the SPM SC2 register.

Thisisthelowest power mode. Basically the deviceis switched off and can only be exited through RESET
or IRQ if enabled. Stopl, just as stop2, can be entered only if the low-voltage detection is disabled. IRQ
will be active-low in stopl regardless of how it was configured before entering stopl. When you wake
from stopl, you re-enter the program flow through the reset vector. No ISR code is processed.

1. Not all devices support exiting stop2 through the KBl — refer to the data sheet for your device.

Programming the Low-Power Modes on HCS08 Microcontrollers

Freescale Semiconductor 31

Hardware Implementation

4 Hardware Implementation

The schematic below shows the hardware used to exercise the code provided.

i
o R1
bl = -
VDD ——— A ETan EED FTCOTHEZ o0
5| FTAIKEIPT PTCLRxD2 [=—0
Dz en RZ 4m O—| FTAZKEIPZ FTCZ:8DA [o—0
O—2- FTAIKEIF: FTcascL |=—0
—H——W— D57 FTAL KEIF4 FTC4 y—=o
O—2 FTAEKEIFS FTCE =—0
LED 470 O—=& =TA% KEIFS PTCA :T"TD
O—=2- PTATAKEIFT PTCT 0
. -
O—5=| FTE0/ADD PTDOTPMICHD o0
35| FTE1/AD: FTDITRMICKT H5—0
O—355| FTE2AD2 FTDZTRMICHZ 550
O—2= FTB3/AD3 FTDTRPMZCHD U
FTD4/TRMZCHT H—o
FTDSTRMICHR [H—C
FTCATRMICHS [S55—0
PTCTTRNICHS =200
FTEDTHDY [He—0
FTEN/RxD1 =50
sreses LY
Freo EE
FTEIMIEO |5
FTE4MOS| [0
sTEs sRecK O
- pTEA =i
Vo Al
] 1 FTF | 54
plit 55
T %T FTE2 [45
= BTF o
WuF ik E:-
r— =ETF4 ——|‘;
* 4 ETEE —-r;—‘-—ﬂ
% rom Bk PTFS TE‘
,E frad =TET —0O
E'-" \iddad
VEESD
a =l
0—1—7— RESET IRQ Lj—o
I Cs WCIE0Ga0 I C3

|
gl
|

NOTE
This example was devel oped using the CodeWarrior IDE version 5.0 for
HC(S)08, and was expressly made for the MC9S08GB60. Changes to the
code may be required before using it to initialize other MCUs. Every
microcontroller needs an initialization code that depends on the application
and the microcontroller itself.

Programming the Low-Power Modes on HCS08 Microcontrollers

32 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the External Interrupt Request
Function (IRQ) for the HCS08 Family
Microcontrollers

by: Laura Delgado

RTAC Americas
México 2005
1 Overview Table of Contents
1 Overview., 33
Thisisaquick reference for using the external interrupt 2 Code Example and Explanation 34
request (| RQ) function on an HCS08 microcontroller 3 Hardware Implementation. 35

(MCU). Basic information about the functional
description and configuration optionsis provided. This
example may be modified to suit your application —
refer to the data sheet for your device.

Note that on some devices, the IRQ signd is active low
(IRQ), while on others, the polarity is selected with

IRQ Function Quick Reference

IRQSC| :IRQPDD:IRQEDG: IRQPE‘ IRQF :IRQACK: IRQIE :lﬂomoq

Interrupt request status and control
IRQPDD — disables the internal pullup device when the IRQ pin is enabled (IRQPE = 1), allowing an external device
to be used (not available on all devices — check your data sheet)
IRQEDG — selects the polarity of the edges or levels that will be monitored in the IRQ pin (i.e., rising edge or falling edge)
(not available on all devices — check your data sheet)

IRQPE — enables the IRQ pin to be used as an interrupt request; basically, it enables the whole IRQ function

IRQF — flags an edge- or level-event in the IRQ pin

IRQACK — allows device to acknowledge IRQ interrupt requests

IRQIE — determines whether the IRQ events will trigger hardware interruptions; if not enabled, the IRQ flag (IRQF) can
still be used for software polling

IRQMOD — selects the kind of event that will be detected in the IRQ pin (i.e., edge or edge-and-level events)

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

IRQEDG, so the IRQ pin name does not have an overbar.

When the IRQ function is enabled, the IRQ pinis monitored for an event to trigger an interruption. Some
microcontrollersin the HCS08 Family have apin assigned specifically for thisfunction. The IRQ interrupt
can be programmed to detect either edge-only or edge-and-level events, aswell as the polarity of such
events.

The configuration register for the IRQ function is the interrupt pin request status and control register
(IRQSC).

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

The project IRQ.mcp implementsthe IRQ function, selecting afalling-edge and low-level event asdesired
to trigger a hardware interrupt. The functions for this example code are:

* man— Endlessloop waiting for the IRQ interrupt to occur.
* MCU_init — Initializes MCU in the IRQ function
* |RQIsr — Toggles the LED when an external interrupt request is made

MCU _init isafunction generated by deviceinitialization and islocated in MCUinit.c also generated by
deviceinitialization

In this application, the IRQ function will be exemplified by turning an LED on and off because of an IRQ
hardware interrupt triggered by the IRQ pin.

Thisistheinitialization code for the external interrupt |RQ using the MC9S08GB60 microcontroller.
During the initialization phase, the interrupts are masked because it takes time for the internal pullup
(typically 26 kQ) to reach alogic 1. After the false interrupts are cleared, the IRQ interrupt is unmasked.

IRQSC &= (unsigned char)~0x02; /* Disable IRQ Interrupt to avoid

false interrupt requests */

IRQSC |: (unsigned char) 0x11; /* Enables the IRQ function */
IRQSC |: (unsigned char) 0x04; /* clears flag */
IRQSC |: (unsigned char) 0x02; /* enable IRQ interrupt */

After this, the IRQ isinitialized and the program is ready for any external interrupt request (from the IRQ
pin). Whenever one occurs, the IRQ interrupt is serviced. Thisinterrupt routine acknowledges the
interrupt, and then changesthelogic state of an LED that will befed from PTF3 output pin. PTF3 will blink
the LED on and off every time an IRQ pin event is detected.

interrupt void IRQIsr (void) {

IRQSC_TIRQACK = 1; /* Acknowledges flags */
PTFD_PTFD3 = ~PTFD_PTFD3; /* Toggle LED */

Using the External Interrupt Request Function (IRQ) for the HCS08 Family Microcontrollers

34 Freescale Semiconductor

Hardware Implementation

Thisinterrupt function is automatically generated and initialized in avector array in MCUinit.c by the
device initialization tool if the option is enabled. The user must define its contents.

3 Hardware Implementation

For this example, only four pins of the MCU are used, which makes hardware implementation fairly
simple. These pins are:

* Supply voltage pin

» Ground reference pin

* |RQ pin asinterrupt input

e |/Opinasoutput; an LED isused as visual display of the IRQ interrupt routine serviced
After the IRQ pin and interruption is enabled, the IRQ pin will be prepared to receive and detect desired
events. Some M CUs share the IRQ pin with other functions. As soon asthe IRQ pinisenabled in IRQSC,
the pin will be used exclusively for the IRQ function. Depending on the sort of event to be detected
(falling/rising edge, falling/rising edge-and-level), an optional pulldown/pullup resistor is available (i.e.,
if the IRQ pinis configured to detect rising edges, the pulldown resistor will be available rather than a
pullup resistor —these variables are defined by the configuration bits IRQEDG and IRQMOD in IRQSC).

Vop
Vop T
MCU %
AN
PTF3—— -
1

IRQ —T—o—oi

GND l

Figure 1. Four Pins of the MCU Needed for IRQ

In the code presented before, the IRQ pinisconfigured to have apullup resistor becauseit will be detecting
falling-edge and low-level events. Theinternal pull-up resistor setsalogic 1 asthe default state on the port.
According to the IRQSC configuration stated in the code before, whenever the button is pressed, the pin
on IRQ will read alogic 0 and trigger a hardware interrupt. Pin PTF3 is set as an output and will turn on
and off the LED with inverse logic. This means that the LED will turn on with alogic 0 on PTA1 and it
will turn off with alogic 1.

NOTE

* The software shown here was devel oped using the CodeWarrior
Development Studio for HC(S)08 version 5.0 using Device
Initialization and was expressly made for the MC9S08GB60. Changes
may be required before the code can be used on another MCU.

* A delay (20 mstypical) within the software is needed to take into
consideration the mechanical stabilization time of the push button. An

Using the External Interrupt Request Function (IRQ) for the HCS08 Family Microcontrollers

Freescale Semiconductor 35

PR 4

Hardware Implementation

alternative choiceisto use adebounce circuit in the IRQ input as shown
in Figure 1.

* ThelRQ pin does not have a clamp diode to V5p. IRQ should not be
driven above Vpp.

Using the External Interrupt Request Function (IRQ) for the HCS08 Family Microcontrollers

36 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Keyboard Interrupt (KBI) for
the HCS08 Family Microcontrollers

by: Laura Delgado
RTAC Americas

México 2005
1 Ove rview Table of Contents
1 Overview., 37
Thisisaquick referencefor using the keyboard interrupt 2 Code Example and Explanation 38
3 Hardware Implementation. 39

(KBI) module on an HCS08 microcontroller (MCU).
Basic information about the functional description and
configuration optionsis provided. The following
examples may be modified to suit your application —
refer to the data sheet for your device.

KBI Quick Reference

Because there is more than one KBl module on some devices, there may be more than one
full set of registers on your device. In the register name below, where there’s a small x,
there would be a 1 or a 2 in your software to distinguish the register that is on KBI1 from that on KBI2.

KBIXSC : | | KBF | KBACK | KBIE | KBMOD
Module configuration .
KBF — set when event occurs KBIE — interrupt enable
KBACK — clears KBF KBMOD — mode select

KBIXPE KBIPE7: KBIPES: KBIPE5: KBIPE4 | KBIPE3 : KBIPE2: KBIPE1 :KBIPEO

KBI Pin Enable
KBIPE[7:0] — enables and disables each port pin to operate as a keyboard interrupt pin

KBIXES ‘KBEDG7: KBEDGG: KBEDGS:KBEDG4 KBEDGS: KBEDG2: KBEDGH :KBEDGO

KBI Pin Enable
KBEDG[7:0] — determines the polarity of the edge that will be recognized as a trigger
event for the corresponding pin
(KBEDG[3:0] not available on all devices — check your data sheet. On some devices, KBEDG[7:4]

are located in the KBIxSC register.)

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

In this application, one of the KBI pinswill be used to trigger an interruption routine that toggles an LED
10 times, every time a keyboard event is detected. The MCU will be programmed to:

* Havethe KBI pin 7 astheinterrupt trigger
» Detect falling edges on the selected pin, as well as afollowing low level
» Generate a hardware interrupt where the LED toggle routine will be serviced

The functions for project “KBI.mcp” are:
* main— Endlessloop waiting for a KBI interrupt.
 MCU_init— MCU initialization in KBI module configuration.
* Vkeyboard_isr — Makes an LED toggle 10 times, every time a KBI interrupt is detected.
» Delay — Makes adelay to make the LED toggling visible

MCU _init isafunction generated by deviceinitialization and islocated in MCUinit.c also generated by
the device initialization, which was included in the project.

Thisistheinitialization code for the keyboard interrupt using the MC9S08GB60. For this example, both
KBI registers (KBI1SC and KBI1PE) will be used to customize the modul e as mentioned above. During
the initialization phase, the interrupts are masked, because it takes time for the internal pull up (typically
about 26 kQ2) to reach alogic 1 (KBI1 in this case). After the false interrupts are cleared, the keyboard
interrupt is unmasked.

void MCU_init (void)

/* ### Init_KBI init code */
/* KBI1SC: KBIE=0 */
KBI1SC &= (unsigned char)~0x02; // Enables any keyboard event to cause a

// hardware interruption

/* KBI1PE:KBIPE7=1,KBIPE6=0,KBIPE5=0,KBIPE4=0,KBIPE3=0,KBIPE2=0,KBIPE1=0,KBIPEO=0 */
KBI1PE = 0x80; ; // Enables KBI PIN 7 to operate as
// a keyboard interrupt pin this pin detects
// falling edges (KBI1SC_KBEDG7 = 0)

/* KBI1SC: KBIMOD=1 */

KBI1SC |: (unsigned char)0x01l; // Chooses an edge-and-level event as

// valid to cause an interruption

/* KBI1SC: KBACK=1 */

Using the Keyboard Interrupt (KBI) for the HCS08 Family Microcontrollers

38 Freescale Semiconductor

Hardware Implementation

KBI1SC |= (unsigned char)0x04;

/* KBI1SC: KBIE=1 */
KBI1SC |: (unsigned char)0x02; // Enables any keyboard event to cause a

// hardware interruption

} /*MCU_init*/

After this, the KBI isinitialized and the programisready for any keyboard interrupt. Whenever one occurs,
the keyboard interrupt is serviced. Inthiscase, only PTA7 will trigger an interrupt becauseit’sthe only one
enabled (KBI1PE_KBI1PE7 = 1). Thisinterrupt routine acknowledges the interrupt, and then toggles the
LED in PTFO ten times.

__interrupt void Vkeyboard_isr (void)
{
int 1 = 0;

KBI1SC_KBACK = 1; // Clears KBI interrupt flag (KBIF)

while (i<10) {// Toggles the led 10 times
PTFD_PTFDO = ~PTFD_PTFDO;
1+4+;

Delay () ;

}

Thisinterrupt function is automatically generated and initialized in avector array in MCUinit.c by the
Device Initialization tool if the option is enabled. The user must define its contents.

3 Hardware Implementation
For this example the hardware implementation isfairly simple, because we are only using PTA7 asaKBI
input. Only four pins of the MCU will be needed:

* Supply voltage pin

» Ground reference pin

* KBI pin asinterrupt input

* /O pinasoutput. An LED isused as visual display of the KBl module proper function.

Using the Keyboard Interrupt (KBI) for the HCS08 Family Microcontrollers

Freescale Semiconductor 39

Hardware Implementation

Voo
Vop T
MCU é
AN
AN
PTFO 4
1
PTA7/KBIP7 —T—O O
GND l

Figure 1. Four Pins of the MCU Needed for KBI

Whenever the button in PTA7 is pressed, a hardware interrupt will be triggered. In the code presented
before, the KBI interrupt was configured to accept falling edgesand low levelsevents. Theinternal pull-up
resistor makesthe default state on PTA7 pinalogic 1. Pin PTFO is set asan output and it will turn the LED
on and off with inverselogic. This meansthat the LED will turn on with alogic 0. For information on the
calculations needed to find the value of R1, refer to application note AN1238: HCO5 MCU LED Drive
Techniques Using the MC68HC705J1.

NOTE

* Thisexamplewasdevel oped using the CodeWarrior IDE version 5.0 for
the HCS08 family, and was expressly made for the MC9S08GB60.
There may be changes needed in the code to initialize another M CU.

* A delay (20 mstypical) within the software is needed to take into
consideration the mechanical stabilization time of the push button. An
alternate choiceisto use adebounce circuit in the KBI input like shown
in the image below.

Using the Keyboard Interrupt (KBI) for the HCS08 Family Microcontrollers

40 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Analog Comparator (ACMP)
for the HCS08 Microcontrollers

by: Oscar Luna Gonzalez
RTAC Americas
México 2005

1 Overview

Thisisaquick reference for using the analog-to-digital
comparator (ACMP) module on an HCS08
microcontroller (MCU). Basic information about the
functional description and configuration optionsis
provided. The following examples may be modified to
suit your application — refer to the data sheet for your
device.

The ACMP module providesacircuit for comparing two
analog input voltages or for comparing one analog input
voltage with an internal reference voltage. Inputs of the
ACMP module can operate across the full range of the

supply voltage.

—_

2
3

ACMP Quick Reference

Because there is more than one ACMP module on some devices, there may be more than one
ACMP status and control register on your device. In the register name below, where there’s a small x,
there would be a 1 or a 2 in your software to distinguish the register that is on ACMP1 from that on ACMP2.

Table of Contents

Overview. 41
Code Example and Explanation 42
Hardware Implementation. 43

ACMPXSC| ACME: ACBGs: ACF : ACIE ACO :ACOPE: ACMOD

Module configuration

ACME — enables module

ACBGS — select bandgap as reference
ACF — set when event occurs

ACIE — interrupt enable

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved.

ACO — reads status of output
ACOPE — output pin enable
ACMOD[1:0] — sets mode

freescale"

semiconductor

Code Example and Explanation

The analog comparator (ACMP) module has two analog inputs named ACMP+ and ACMP-, and one
digital output named ACMPO. ACMP+ serves as a hon-inverting analog input and ACMP- serves as an
inverting analog input. ACMPO serves as adigital output and can be enabled to drive an external pin. The
ACMP module can be configure to connect the output of the analog comparator (ACMPO) to TPM input
capture channel 0 by setting ACIC in SOPT2. With the input capture function, the TPM can capture the
time at which an external event occurs. Rising, falling, or any edge may be chosen as the active edge that
triggers an input capture.

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

The project (QG8_ACMP.mpc) implements the ACMP function, selecting arising- or falling-edge event
to trigger hardware interrupt. The main functions are:

* man— Endlessloop waiting for the ACMP interrupt to occur.

* MCU_init — Configures MCU to work with the internal oscillator, and enablesthe ACMP
module.

« ACMP_Isr — Toggles an LED after arising or falling edge event occurs.

This example consists of comparing two different input voltages using the ACMP module. ACM P— will
be feed with a static voltage (1.5 V) and will serve as areference voltage. ACMP+ will be fed with a
variable voltage (0 to 3 V). Every time the ACMP+ voltage crosses the ACMP- reference voltage, a
hardware interrupt will be triggered turning on and off apin at port B (PFTBD_PTBDO).

In thisapplication, the ACMP modulewill be demonstrated by turning an LED on and off duetoan ACMP
hardware interrupt triggered by the comparison voltage between ACMP+ and ACMP-.

Please refer to the source code for more details.

Following these steps, the user will be able to use the ACMP module for this example:

1. Configure the analog comparator register (ACMPSC).
/* ACMPSC: ACME=1, ACBGS=0, ACF=1, ACIE=1, ACO=0, ACOPE=0,
ACMOD1=1, ACMODO=1 */

ACMPSC = 0xB3; /*Analog Comparator Enable, External pin ACMP+
selected as Non-inverting input,Compare event
has not occurred, Enables ACMP interrupt,
Analog Comparator Output not available on ACMP,
Sets ACF flag when compare event detects rising
Or falling edge */

2. Declare ACMP interrupt service routine

__interrupt void ACMP_Isr (void)) /* Declare ACMP vector address interrupt*/
/* ACMP Vector Address = 20 */

Because an interrupt based algorithm is being implemented, the global interrupt enable mask must be
cleared asfollows:

Using the Analog Comparator (ACMP) for the HCS08 Microcontrollers

42 Freescale Semiconductor

Hardware Implementation

EnableInterrupts; /* __asm CLI; */
From this point on, the code execution is performed inside the ACMP interrupt service routine. The code
inside does the following:

1. Clear ACMP interrupt flag.

ACMPSC_ACF = 1; /* clear ACF flag */

2. Next the ISR will contain the code that toggles an LED each time arising or falling edge event
OCCUrS.

3 Hardware Implementation

This schematic shows the hardware used to exercise the code provided.

ACKMP- reference
voltage ACNMP+ voltage

1.8V 3V Rz

' 7 R
K
%k L4
J___ . 3

0 = FTANKEIFOTRIACHOADROACHR FTEOKEIR4/RD/ADF

NOTE

» Thisexample code was devel oped using the CodeWarrior Devel opment
Studio for HC(S)08 v5.0 using Device Initialization, and was expressly
made for the MC9S08QGS in the 16-pin package. Changes may be
needed before the code can be used with other HCS08 MCUs.

e ACMP module can operate comparing one analog input to an internal
reference voltage. This example code was expressly made to configure
the ACMP module to work without using the internal reference voltage.

» Theanalog comparator circuit is designed to operate across the full
range of the supply voltage. Please see the data sheet for your device.

Using the Analog Comparator (ACMP) for the HCS08 Microcontrollers

Freescale Semiconductor 43

Hardware Implementation

Using the Analog Comparator (ACMP) for the HCS08 Microcontrollers

44 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the 10-Bit Analog-to-Digital
Converter (ADC) for the HCS08 Family
Microcontrollers

by: Andrés Barrilado Gonzalez

RTAC Americas
México 2005
1 Ove rV|eW Table of Contents
o)) _ 1 Overview......... 45
Thisisaquick reference for using the 10-bit 2 Code Example and Explanation 46
analog-to-digital converter (ADC10) module on an 3 Hardware Implementation. 48

HCS08 microcontroller (MCU). The ADC moduleis
different from the ATD module — check the data
sheet for your device. A functional description and basic
information on the configuration of the moduleis
provided. The following examples may be modified to
suit your application — again, refer to the data sheet for

your device.
ADC Quick Reference
Because there is more than one ADC module on some devices, there may be more than one

set of registers on your device. In the register names below, where there’s a small x,
there would be a 1 or a 2 in your software to distinguish the register that is on ADC1 from that on ADC2.

For the specific pin control registers and bits on your device, please refer to your data sheet.

ADCxSC1 |coco . AIEN ' ADCO ADCH \
Interrupt enable; continuous conversion enable; input channel select

ADCXSC2 | ADACT' ADTRG | ACFE | ADFGT| : . . |

| |
Compare function, conversion trigger, and conversion active control

ADCxRH| | . : | : : ADR9 : ADRS \

ADCxRL| ADR7 : ADRG : ADR5 : ADR4 \ ADR3 : ADR?2 : ADR{1 :ADRO \
Result of ADC conversion

ADCXCVH | : : : | : : ADCV9 :ADCV8 \

ADCXRCVL |ADCV7 : ADCV6 :ADCV5 :ADCV4 ‘ADCV3 :ADCV2 : ADCVA :ADCVO \

Compare value

ADCXCFG | ADLPC ADIV ' ADLSMP| MODE ADICLK |
Mode of operation, clock source select, clock divide, sample time, and low power configuration

APCTL1 |ADPC7: ADPC6 : ADPC5 : ADPC4 \ ADPC3 : ADPC2 : ADPC1 :ADPCO‘

APCTL2 |ADPC15: ADPC14: ADPC13 : ADPC12‘ ADPC11 : ADPC10 : ADPC9 :ADPCB \

APCTL3 |ADP023: ADP022: ADPC21 :ADPCZO ‘ADPC19 : ADPC18: ADPC17:ADPC16‘
Pin control: ADC or I/O controlled

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

The HCS08 10-bit analog-to-digital converter (ADC) is a successive-approximation converter available
for 10-bit resolution. Some HCS08 microcontrollersinclude an ADC modul e with awide range of options
for the user. See the data sheet for family-specific features.

» Two optionsfor resolution: 8-hit or 10-bit, configurable by software
» Conversion type adaptable to each application: alows single or continuous conversion

* Includes a conversion complete flag and a conversion complete interrupt, allowing the user to
choose either polling or an interrupt-based approach

» Selectable ADC clock frequency: includes a bus clock prescaler

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

The following example describes the initialization code for the 10-bit ADC module using the
interrupt-based approach, 10-bit resolution, and continuous-sample mode.

The zip file contains the following functions:
* main—Loops forever

* MCU_init— Configures hardware and the ADC module to accept ADC interrupts, selects channel
1 asthe input channel, and formats the result

* Vadc isr — Respondsto ADC interrupts and turns an LED on or off accordingly

MCU _init isafunction generated by deviceinitialization and islocated in MCUinit.c also generated by
the device initialization, which was included in the project.

Following these five simple steps, you can use the ADC module:

1. Configurethe APCTL1, APCTL2 and APCTL 3 registers for the ADC module:
APCTL1 = 0x80;

Thiswill select which pinsthe MCU will use asinput for ADC conversions. For thisexample, pin
1 has been enabled for ADC use.

2. Configure the AD1CFG register for the ADC module:
ADCCFG = 0x78;

There are three main purposes for this step: (a) format the result, (b) establish the speed at which
the signal will be sampled, and (c) select the power mode.

For the first part, one must first choose between 8-bit resolution and 10-bit resolution. For this
example, 10-bit resolution has been selected.

The second part of the configuration of thisregister allowsthe user to set the sampling speed of the
ADC by selecting the ADC clock source, and an ADC-clock prescaler. The speed of the conversion
depends on the resol ution selected (8- or 10-bit), the frequency of the clock source, and the value
of the prescaler. Table 1 presents different scenarios where an estimate of the number of cyclesis
shown for a compl ete conversion.

Using the 10-Bit Analog-to-Digital Converter (ADC) for the HCS08 Family Microcontrollers

46 Freescale Semiconductor

Code Example and Explanation

Table 1. Total Conversion Time vs. Control Conditions

Conversion Type ADICLK ADLSMP Max Total Conversion Time
Single or first continuous 8-bit 0x, 10 0 20 ADCK cycles + 5 bus clock cycles
Single or first continuous 10-bit 0x, 10 0 23 ADCK cycles + 5 bus clock cycles
Single or first continuous 8-bit 0x, 10 1 40 ADCK cycles + 5 bus clock cycles
Single or first continuous 10-bit 0x, 10 1 43 ADCK cycles + 5 bus clock cycles
Single or first continuous 8-bit 11 0 5 us + 20 ADCK + 5 bus clock cycles
Single or first continuous 10-bit 11 0 5 us + 23 ADCK + 5 bus clock cycles
Single or first continuous 8-bit 11 1 5 us + 40 ADCK + 5 bus clock cycles
Single or first continuous 10-bit 11 1 5 us + 43 ADCK + 5 bus clock cycles
Subsequent continuous 8-bit; XX 0 17 ADCK cycles
fBus > fapck
Subsequent continuous 10-bit; XX 0 20 ADCK cycles
fus > fapck
Subsequent continuous 8-bit; XX 1 37 ADCK cycles
fBus > fapck/11
Subsequent continuous 10-bit; XX 1 40 ADCK cycles
fBus > fapck/11

In this example, the bus clock has been selected as the ADC clock, with a divide-by-8 prescaler
value.

Finally, it isimportant to select the power consumption of the module. Low power consumption
does not enabl e the converter to operate at maximum speed. Long sampletimes also help with low
power consumption. In this example, low power configuration with long sample times has been
sel ected.

3. Configure the compare function for the ADC module:
If enabled, the compare function will raise the conversion complete flag only when the ADC result
isgreater- or less-than apre-established value. Setup isatwo step process. First, the pre-established
10-bit value must be set.

ADCSC2 = 0x30;

Next, the AD1SC2 register hasto be configured. In doing so, the automatic compare function can
be enabled and configured to flag greater- or less-than values. Also, ADC hardware or software
triggering can be selected. In this example, the compare function is enabled with greater-than
comparison and software triggering is selected.

4. Configurethe AD1SC1 register for the ADC module:

ADCSC1 = 0x67;

The AD1SC1 register allowsthe user to select either the polling method or the interrupt method to
handle conversions. If theinterrupt method is selected by setting the interrupt enable bit, when the
conversion is complete, the read-only conversion complete flag in thisregister will be set. The
program will then jump to theinterrupt serviceroutine. If the polling method is sel ected by clearing
the interrupt enable bit, the software must continuously poll the conversion complete flag to
determine when the conversion is done. In this example, ADC interrupts are enabled in
continuous-conversion mode, and channel 1 is selected.

5. Read the result after the ADC conversion is done:

ADCRL,;

Using the 10-Bit Analog-to-Digital Converter (ADC) for the HCS08 Family Microcontrollers

Freescale Semiconductor 47

Hardware Implementation

PTBD_PTBD6 = ~ADCRH_ADRS;
PTBD_PTBD7 =~ADCRH_ADROY;
ADCSC1 &= Ox7F;

After the ADC conversion is done, the conversion complete flag will be set, and the program will
jump to the ADC interrupt service routine. The resulting conversion is placed in the ADC result
dataregisters (ADC1RH/ADCIRL). For 8-bit conversions, the ADC1RL contains the result; for
10-hit conversions, the ADC1RH register contains the most significant bits, and the ADC1RL
register contains the least significant ones. After any of the ADC result dataregistersisread, the
conversion complete flag will be cleared. To start anew conversion, the AD1SC1 register must be
written again. The same configuration can be re-written to start a new conversion.

3 Hardware Implementation

As mentioned before, ADP7 is the selected pin for our analog input, which, for the purposes of this
example, isavariable resistor. The variable resistor (potentiometer) allows ADP7 to receive voltages
between Vpp and Vgg. The LEDs used in this application are set in inverse logic. This means, the LED
will turn on with alogic 0 on ADP7 and will turn off with alogic 1. The ADC also requires four
supply/reference/ground connections. Analog power (Vppap). used as the ADC power connection;
analog ground (V sgap), used asits ground connection; voltage reference high (V ggen), the high reference
voltage for the converter; voltage reference low (Vgeg), the low reference voltage for the converter.
Depending on the package, these ports can be externally available. If so, always connect them, also
connect the Vg pin to the same voltage potential as 'V ggap, the MC9S08QGS8 microcontroller have
these connections internally. V gy may be connected to the same potential asVppap, Or may be driven
by an external source that is between the minimum Vppap spec and the Vppap potentia (V ggpy must
never exceed Vppap, for moreinformation refer to the specific data sheet).

NOTE

This software example was devel oped using the CodeWarrior Devel opment Studio
for HC(S)08 version 5.0 using Device Initialization and tested using a
MC9OS08QGS8 running in self-clocked mode. Coding changes may be needed to
initialize another MCU. Every microcontroller’sinitialization code depends on the
application and the microcontroller itself.

VgD ﬁ
WDD
h 4 12 PTASIRETCLHRESET FTALKBIPOTPRMCHOADPOACKP+ %(
% = ><—3 PT A48 CHP OB GDMS PTATMBIPT /S0P IACKP- ﬁ
S D-I||—| | od PTA2KBIPZ/SDADP 5
= vss PTASMBIFS/SCLIADPS 3 cor
g | PTEF/SCLATAL PTEOMBIP4FxDrADP4 ﬁ
7 | PTEG/SDAKTAL | PTASMBIPS/TDEADPS W
>H8 PTBSTPMCHT '55] PTEZMBIPESPSCHIADPE ﬁ
H——{ PTB4MISC PTEIRBIPT MOSKADPT :D

MCOS020 G2

Using the 10-Bit Analog-to-Digital Converter (ADC) for the HCS08 Family Microcontrollers

48 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Analog-to-Digital Converter
(ATD) for the HCS08 Microcontrollers

by: Andrés Barrilado Gonzalez

RTAC Americas
México 2005
1 Ove rV|eW Table of Contents
o]) o 1 Overview. 49
Thisisaquick reference for using the analog-to-digital 2 Code Example and Explanation 50
converter (ATD) module on an HCS08 microcontroller 3 Hardware Implementation. 51

(MCU). The ATD moduleisdifferent from the ADC
module— check the data sheet for your device. Basic
information about the functional description and
configuration options is provided. The following
examples may be modified to suit your application —
again, refer to the data sheet for your device.

ATD Quick Reference

ATD1PE ‘ATDPE7: ATDPEG: ATDPES5 : ATDPE4 | ATDPE3 :ATDPE2 :ATDPE1 :ATDPEO‘
ATDPE[7:0] — allows the pins dedicated to the ATD module to be configured for ATD usage

ATD1 RH ‘ | | 1 1 | | 9 <I | | 1 1 | | 1 :; 0 ‘ ATD1 RL
Right-aligned
| T T T I T T | I T T T T T T
ATD1 RH ‘ 9<I | 1 1 1 | 1 | I> 0 1 1 | | 1 | ‘ ATD1 RL
Left-aligned

8-bit conversion results are always stored in ATD1RL
10-bit conversion results are stored as left-justified or right-justified.

ATD1C ATDPu: DJM : RES8 ' SGN PRS

ATDPU— enables or disables the module, allowing the MCU to enter a low-power state

DJM — determines if the 10-bit conversion result maps into the ATD result data registers as right-
or left-justified

RES8 — selects 8- or 10-bit conversions

SGN — chooses between signed and unsigned results

PRs — selects the prescaler factor for the ATD conversion clock

ATDCH

ATD1SC | CCF ATDID : ATDCO

CCF — flags an ATD conversion complete

ATDID — enables ATD interrupts

ATDCO — selects continuous ATD conversions or single ATD sample mode
ATDCH — selects one of the ATD channels to be scanned

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

|
y

'
A

Code Example and Explanation

2 Code Example and Explanation

The following example describes the initialization code for the 10-bit ATD module using the
interrupt-based approach, 10-bit resolution, and continuous-sample mode. This example codeisavailable
inside the CodeWarrior project or from the Freescale Web site in HCSO8QRUGSW.zip.

It contains the following functions:
* man— Loopsforever

e MCU_init — Configures hardware and the ATD module to accept ATD interrupts, selects
channdl 1 asthe input channel, and formats the result

MCU _init isafunction generated by deviceinitialization and islocated in MCUinit.c also generated by
the device initialization, which was included in the project.

Following these four simple steps, the user can use the ATD module:

1. Configure the ATD1PE register for the ATD module:
ATD1PE = 0x02; /* Write breaks the conversion */

Thiswill select which pinsof the MCU will be used asinput for ATD conversions. For thisexample, pin 1
has been enabled for use by the ATD.

2. Configurethe ATD1C register for the ATD module:
ATD1C = OxAOQ; [* Write breaks the conversion */

There are two main purposes to this step: (a) format the result and (b) establish the speed at which the
signal will be sampled.

For the first part, one must first choose between 8-bit resolution and 10-bit resolution. When selecting the
latter, it isalso necessary to select between right- or left-justification; for 8-bit resolution, thisfield is not
relevant. It is also possible to select between signed (two’s compliment) and unsigned format using this
register. For this example, 8-bit, unsigned data format has been selected.

The second part of the configuration for this register enables to decide on the sampling speed of the ATD
viaabus-clock prescaler. The ATD conversion clock must operate between a specific range of frequencies
for correct operation. If the selected prescaler is not fast enough, the ATD will generate incorrect

conversions. According to the bus-clock speed, the prescaler must be set according to the formulas bel ow:

ClK, 0. <(ATDCIK,,,) * (PreScaler +1)* 2)
ClK,,; 5, = (500kH2Z) * ((PreScaler +1)* 2)

Where the Maximum Bus Clock is defined by the ICG configuration for the MC9S08GB60
microcontroller. The Maximum ATD Conversion Clock is2 MHz when Vpp is greater than 2.08 V and
1 MHz when under this same value, and the prescaler isthe value to be set. For the ATD to operate
correctly, prescaler values must be between the values obtained for thisvariablein this two equations. For
this example, a prescaler value of 0 has been selected, the bus clock is4 MHz, and Vpp is3 V.

Finally, it isimportant to power up the module. If thisbit isnot set (ATDPU in ATD1C register), the ATD
is not enabled, and it will not work.

Using the Analog-to-Digital Converter (ATD) for the HCS08 Microcontrollers

50 Freescale Semiconductor

Hardware Implementation

3. Configure the ATD1SC register for the ATD module:
ATD1SC = 0x41, [* Write starts a new conversion */

The configuration of the ATD1SC register allowsthe selection of which of the eight ATD channelswill be
used. Configuration of the polling method (polling or interruption), and continuous or single conversion
modes are also included. If theinterrupt method is sel ected, when the conversion is complete the read-only
Conversion Complete Flag (also in this register) will be set and the program will jump to the interruption
routine. For this example, ATD interrupts are enabled in single-conversion mode, and channel 1is
selected.

4. Read the result after the ATD conversion is done:

After the ATD conversion is done, the Conversion Complete Flag will be set and the program will jump
to the ATD interrupt routine. The resulting conversion is placed at the ATD Result Data registers.

__interrupt void Vatdl isr(void)

{
result = ATD1RH; /* Read result and acknowledge interrupt */
PTFD_PTFD3 = ~ATD1RH_BIT15;
PTFD_PTFD2 = ~ATD1RH_BIT14;
PTFD_PTFD1=~ATD1RH _BIT13;
PTFD_PTFDO = ~ATD1RH_BIT12;
ATD1SC = ATD1SC,; [* Re-Start Conversion for Chl */
}

Thisinterrupt function is automatically generated and initialized in a vector array in MCUinit.c by the
Device Initialization tool if the option is enabled. The user must define its contents.

Because this example is configured for 8-bit resolution conversion, the ATD1RH register contains the
result. After any of the ATD Result Data registersis read, the Conversion Complete Flag will be cleared
(acknowledged). To start a new conversion, the ATD1SC register must be written again. The same
configuration can be re-written to start a new conversion.

3 Hardware Implementation

AD1P1 isthe selected pin for our analog input, which, for the purposes of this example, is avariable
resistor. The variable resistor (potentiometer) allows AD1P1 to receive voltage values between Vp and
Vg Analog power (Vppap) isused asthe ADC power connection, analog ground (V sgap) isused asits
ground connection. Voltage reference high (V gregy) isthe high reference voltage for the converter. V geey
may be connected to the same potential asVppap, OF may be driven by an external source that is between
the minimum Vppap spec and the Vppap potential (V gegey Must never exceed Vppap. For more
information, refer to the specific data sheet). Voltage reference low (Vgeg) iSthe low reference voltage
for the converter. If externally available, always connect the Vrgr pin to the same voltage potential as
V ssap- Finally, the LED used in this application example (turnson every dataconversion) isset ininverse
logic, which means that the LED will turn on with alogic 0 on AD1P1 and it will turn off with alogic 1.

Using the Analog-to-Digital Converter (ATD) for the HCS08 Microcontrollers

Freescale Semiconductor 51

Hardware Implementation

The schematic below shows the hardware used to exercise the code provided.

o
o2 pragskpIRD PTCOTxDZ [F—O
C— PTAIZKBIF1 PTCI/RxDZ [0
O PTAEKBIRS PTCEA0A [0
0D O—z5—| PTA/KBIP3 PTCHSCL [—0
G O—21| PTA4/KBIP4 PTC4 [5—C
O—a5| PTA6/KBIPS PTCS [0
R Oz PTA6/KBIPG PTCE 2
paT O— PTATIKBIFT PTC? [0
o2 PTBOADD PTDOTPMICHD [35—0
- 5| PTB1/ADT FTO1/TPRICHI [55—0
D5 PTB2/ADE PFTDZTPMICHZ 55— g
D32 PTBS/AD3 PO TRRE CHO [55—C %
C—sa—| PTB4/A04 FTO4HTRRE CHI [55—0
O—22-{ PTBS/A05 PTOSAPMECHZ [0
— CO—35 | FTBG/ADE PTOBTRRECHZ o
- O—="— PTET/ADT PTO7/TRAMECHS 50 e
o2 PTGO/BKEDMS PTELTD1 [Ha—0 % Lol
O—g5| FTG1ATAL PTEI/RxD1 7o *
O 1| PTG/EATAL PTEZ/5S g0
C—gz| PTG2 PTEZMISO (gD
C—ga| FTi4 FTE4MO S [5—D =
C—pa| PTGS FTES/SPSCK [0 40
w00 O—=— PTGE PTES 5 —
T O—=— FTG7 RTE?F [0
54
+ PTFD [&5
o= 14 PrF1 57 -
"I dwF T oauF 73| v I)
Wz ATF3 [+3—2
— PTF4 o502
- . PTFS [0
1 | eth PTFG gz 0
| we | el ATF? =
“Wizad
=l 1 | — 16
E e L1 IR [0
05 MCOS0SGEED
0.1uF

NOTE

This software was developed using the CodeWarrior Devel opment Studio
for HC(S)08 version 5.0 using Device Initialization and tested using a
MC9S08GB60 running in self-clocked mode. Coding changes may be
needed to initialize another MCU. It isimportant to consider that every
microcontroller needs an initialization code that depends on the application
and the microcontroller itself.

Using the Analog-to-Digital Converter (ATD) for the HCS08 Microcontrollers

52 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Inter-Integrated Circuit (I1C)
Module on the HCS08 Microcontrollers

by: Miguel Agnesi Meléndez

RTAC Americas

México 2005
1 Ove rview Table of Contents

1 Overview., 53

Thisdocument isaquick referencefor programmingand 2 Code Example and Explanation 53

; ; ; ; 2.1 Configure IIC Function. 54
ergs ng the F|||ash memory incl Uded inthe HCSSbS Far?]”y 2.2 Write Bytes and Read Bytes Functions. ... 55
mICFQCOHtFO ers_ (M CUS)- BaSI_C mfo_rmatlon Oytt e 2.3 MainFunction 56
functional description and configuration are provided. 2.4 Interrupt Handler Routine 56
The exarnp|e may be modified to suit the Spec|f|c needs 3 In-Depth Reference Material................ 59
for your application —_ refer to the data sheet for your 3.1 HCSO08 IIC Module Functional Description . 60
device.

IIC Quick Reference
IICA | ADDR L 0]

Address to which the module will respond when addressed as a slave (in slave mode)
IICF | MULT : ICR |
Baud rate = BUSCLK / (2 x MULT x (SCL DIVIDER))

IICC‘ IICEN: IICIE : MST : X \ TXAK: RSTA : 0 : 0 \
Module configuration

IICS‘ TCF : IAAS : BUSY : ARBL \ 0 : SRW : IICIF :RXAK‘
Module status flags

ICD | DATA |

Data register; Write to transmit [IC data read to read IIC data

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

The example shown here consists of generic code to use the HCS08 MCU [1C module to communicate with
another I1C device, using the HCS08 MCU |1C interrupt routine to handle most of the communication. This

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

exampleisintended to be used in a basic scenario where the communication just addresses the slave and
in the next byte starts sending or receiving data.

The code can be used in amaster or slave implementation with out any modification, in order to make the
code as generic as possible a 128 bytes array is used as a buffer to store the data received trough the 11C
module and also to send data from this buffer when data is sent trough the 11C module.

The code breaks the I1C communi cation process into several steps, which are tracked by a global variable
called 12C_STER, this makes easier for the main code to know if the [IC module is ready for a new
communication, if an error has occurred or the actual status of the communication.

The defined 11C steps are:

#define IIC_ERROR_STATUS

#define IIC_READY_STATUS

#define IIC_HEADER_SENT_STATUS
#define IIC_DATA_TRANSMISION_STATUS
#define IIC_DATA_SENT_STATUS

s W N PR o

The code needs global variablesto control the 11C communication in an easy manner, by modifying these
variables the interrupt routine can handle the desired communication steps.

unsigned char I2C_STEP

Used to store the actual status of the 11C communication.

unsigned char I2C_LENGTH
When the device is configured as master this variable stores the number of bytesto be read from the slave
or sent to the dlave.

unsigned char I2C_COUNTER

Stores the bytes that are sent or received.

unsigned char I2C_DATA[128]

Array used as transmit or receive buffer for 11C communications.

unsigned char I2C_DATA_DIRECTION

Used to indicate if data should be sent to the salve or read from the slave.

2.1 Configure IIC Function

M odule configuration isaccomplished by the configurel 2C function; thisfunction receivesthe device self
address and setsthe |1C bus speed to the desired frequency. This value may change between devices and
clock configuration; please refer to the data sheet for detailed information.

/* Function to configure the IIC module. */
void configureI2C (unsigned char selfAddress) {
IICC_IICEN = 1; /* Enable IIC */

IICA = selfAddress; /* IIC Address */
IICF = 0x8D; /* Set IIC frequency */

Using the Inter-Integrated Circuit (1IC) Module on the HCS08 Microcontrollers

54 Freescale Semiconductor

Code Example and Explanation

2.2 \Write Bytes and Read Bytes Functions

The code has implemented two functions as an example on how to use the global variables to read data
from the slave or to send datato the slave, because we are initializing the communication when using these
routines both of these functions set this device as the master device, send the address of the selected dave
and after this step the following 11C communication will be handled by the interrupt handler routine
according to the 11C global variables settings.

A small delay is used after the master bit isset to 1. Thisdelay is used to stabilize the bus signalsin noisy
environments. This delay can be modified or deleted according to the specific application bus
characteristics.

unsigned char WriteBytesI2C (unsigned char slaveAddress,unsigned char numberOfBytes) {
unsigned char Temp;

I2C_LENGTH = numberOfBytes;
I2C_COUNTER =0;

I2C_STEP = IIC_HEADER_SENT_STATUS;
I2C_DATA_DIRECTION = 1;

/* Format the slave address to place a 0 on the R/W bit (LSB).*/
slaveAddress &= OXFE;

IICC_IICEN = 0;

IICC_IICEN = 1;

IICS; /* Clear any pending interrupt */

IICS_IICF=1;

IICC_MST = 0;

IICS_SRW=0;

IICC_TX = 1; /* Select Transmit Mode */

IICC_MST = 1; /* Select Master Mode (Send Start Bit) */
for (Temp=0; Temp<5; Temp++); /* Small delay */
ICD=slaveAddress; /* Send selected slave address */

return(l) ;

}

unsigned char ReadBytesI2C (unsigned char slaveAddress,unsigned char numberOfBytes) {
I2C_LENGTH = numberOfBytes;

I2C_COUNTER =0;
I2C_STEP = IIC_HEADER_SENT_STATUS;
I2C_DATA_DIRECTION = 0;

/* Format the Address to fit in the IICA register and place a 1 on the R/W bit. */

slaveAddress &= OxFE;

slaveAddress |: 0x01; /* Set the Read from slave bit. */
IICS; /* Clear any pending interrupt */

IICS_TIICIF=1;

IICC_TX = 1; /* Select Transmit Mode */

IICC_MST = 1; /* Select Master Mode (Send Start Bit) */
IICD=slaveAddress; /* Send selected slave address */
return(l) ;

Using the Inter-Integrated Circuit (IIC) Module on the HCS08 Microcontrollers

Freescale Semiconductor 55

Code Example and Explanation

2.3 Main Function

The main function in this example configures the internal bus to 20 MHz and initializes the 11C module
with adifferent address depending if the MASTER variable is defined on the code, the address assigned
are random selected values, these values can be modified to fit the specific application.

After initialization the global interrupts are enabled, and if the MASTER variable is defined, datais read
from the slave and then datais sent to the slave by calling the respective functions.

void main(void) {

/* Configure internal clock reference.

* Internal clock and 19,995,428 bus frequency. */
ICGCl = 0x28;

ICGC2 = 0x70;

/* Configure interfaces. Set our IIC address. */
#ifdef MASTER
configureI2C (0x50) ;

I2C_DATA[O]='A"; /* test data */
#else

configureI2C (0x52) ;
#endif

EnableInterrupts; /* enable interrupts */

#ifdef MASTER

ReadBytesI2C(0x52,6);

WriteBytesI2C(0x52,6);

while (I2C_STEP>IIC_READY_STATUS)__ RESET_WATCHDOG(); /* wait for memory to be read */
#endif

/* Application is based on interrupts so just stay here forever. */
for(;;) {
__RESET_WATCHDOG(); /* feeds the dog */
} /* loop forever */
/* please make sure that you never leave this function */

}

2.4 Interrupt Handler Routine

The most important part of the codeisthe 11C interrupt handler routine, which acknowledges the interrupt
and then depending on the 11C communication status, follows the appropriate steps to send or receive the
remaining bytes.

This routine handles the master and slave interrupts in both transmit and receive modes. The routine
determines whether the deviceis acting as a master by verifying the MST bit in the control statusis set. If
o, it follows the master logic to read write the next byte. If the deviceis configured asslave, it followsthe
slave logic to read or write the next byte.

interrupt 24 void IIC_Control_handler (void)

The handler routine clears the interrupt flag.

IICS; /* ACK the interrupt */
IICS_TIICIF=1;

Using the Inter-Integrated Circuit (1IC) Module on the HCS08 Microcontrollers

56 Freescale Semiconductor

Code Example and Explanation

Then verifiesif acollision as occurred on the bus to set the IC_ERROR_STATUS and stop the
communication.
if (IICS_ARBL==1){ /* Verify the Arbitration lost status */
IICS_ARBL= 1;
IICC_MST = 0;
I2C_STEP = IIC_ERROR_STATUS;
return;

}
Verify if our moduleisthe I1C master device by reading the MST hit.
Notice this bit is cleared automatically if an arbitration lost has occurred.

if(IICC_MST==1){ /* If we are the IIC Master */
If the last byte was not ACK stop communication and set the error flag.
if (IICS_RXAK==1){ /* Verify if byte sent was ACK */
IICC_MST = 0;
I2C_STEP = IIC_ERROR_STATUS;
return;

}

Verify whether thisinterrupt was generated due to the first byte transmission complete (byte containing
slave address and datadirection bit). If so, configure the module direction bit according to the desired read
from slave or write to slave configuration.

Set the global variable I2C_STEP to data transmission status.

1f (I2C_STEP == IIC_HEADER_SENT_ STATUS){ /* Header Sent */
IICIC_TX = I2C_DATA_DIRECTION;
I2C_STEP = IIC_DATA_ TRANSMISION_STATUS;

If we are about to read data from slave read the data register to clock in the first byte sent from the slave
and return from the interrupt handler to wait until the requested byte is received.
if (ITCC_TX==0){
IICD;
return;
}
}
If in the data transmission status, verify if we are sending or receiving data from the slave.

if (I2C_STEP == IIC_DATA_TRANSMISION_STATUS) {

If we are sending datato the slaveload |1C dataregister with the next byte, verify whether we have reached
the number of bytesto be sent to set the global variable I2C_STEP valueto DATA_SENT_STATUS and
then wait for this byte to be transmitted to the slave.

if (ITCC_TX==1){
IICD = I2C_DATA[I2C_COUNTER]; /* Send the next byte */

I2C_COUNTER++;
if (I2C_LENGTH <= I2C_COUNTER) {

I2C_STEP=IIC_DATA_SENT_STATUS;
}

return;

}

Using the Inter-Integrated Circuit (IIC) Module on the HCS08 Microcontrollers

Freescale Semiconductor 57

Code Example and Explanation

If the master isreading datafrom the slave, verify whether we are about to read the last byte to change the
TXAK bit to 1 and avoid acknowledging the next byte read to indicate the slave we are done reading data.

else{

1if ((I2C_COUNTER+1) == I2C_LENGTH)
IICC_TXAK = 1; /* to indicate end of transfer */

Read the next byte.

I2C_DATA[I2C_COUNTER] = IIC1D; /* Read the next byte */
I2C_COUNTER++;

If we have finished reading data set the global variable 12C_STEP value to DATA_SENT_STATUS.

if (I2C_LENGTH <= I2C_COUNTER) {
I2C_STEP=IIC_DATA_SENT_STATUS;
}

Wait until next byteisread.

return;
}
}

After we have finished with the data transmission or reception and the | ast byte has been sent/received, the
device should generate the stop signal on the bus and set the global variable 12C_STEP vaue to
READY _STATUS

1f (I2C_STEP==IIC_DATA_SENT STATUS) {

I2C_STEP=IIC_READY_STATUS;

IICS;

IICS_TIICIF=1;

IICC_TX=0;

IICS_SRW=0;

IICC_MST=0;

return;

}

}

If the device is acting as the slave device on the IIC bus
else{ /* SLAVE OPERATION */

Verify whether thisisthe first byte received (address and data direction byte) by looking at the actual
global variable 12C_STEP value. If we were in aready status, thisisthe first byte received.

if (I2C_STEP <= IIC_READY_STATUS) {
I2C_STEP = IIC_DATA_TRANSMISION_STATUS;

Configure the module data direction to the desired slave transmit or slave receive according to the less
significant bit on the data received.

IICC_TX = IIC1S_SRW;
I2C_COUNTER = O0;

If we are receiving data, we should read the [1C1D (containing the address byte) to free the 11C bus and
get the next byte (which will be the first data byte sent to the slave).

1if (IICC_TX==0) {
IICD;

Using the Inter-Integrated Circuit (1IC) Module on the HCS08 Microcontrollers

58 Freescale Semiconductor

In-Depth Reference Material

return;
}
}

If thisis not the first byte received
if (IICS_TCF==1) {
If we are receiving data store the received byte on the buffer and return.

1if(IICC_TX == 0){
I2C_DATA[I2C_COUNTER]=IIC1D;
I2C_COUNTER++;

return;

}
If datais sent from the slave to the master

else{ /* Data sent by the slave */

Verify if thelast byte sent was acknowledged, it not the transmission has finished so we clear the flagsand
freethe l1C bus.

if (IICS_RXAK==1) {
IICC_TX = 0;
IICD;
I2C_STEP = IIC_READY_ STATUS;
return;

}

If the byte was acknowledged place the next byte in the data register so the bus signals allow the master
to read the next byte.

TIICD = I2C_DATA[I2C_COUNTER];
I2C_COUNTER++;
return;

3 In-Depth Reference Material

Physicaly, thellC busisasimplebidirectional bus, based on two wires, serial data (SDA) and serial clock
(SCL). Each device on the bus must have open collector linesto interface with the bus. Because the busis
popul ated with open collector devices, pullup resistors must be used for each line on the bus.

Data and control signals share the same bus. The |1C standard specifies that when data bits are sent, SDA
may change only when SCL islow. When SCL ishigh and SDA changes, it indicates a start or stop signal.

e SCL high and SDA goes from high to low it isa start signal.
e SCL high and SDA goesfrom low to high it isastop signal.

The 11C bus specification is oriented for serial 8-bit data transfers with an extra acknowledge bit in the
serial communication. This 9™ bit is held down by the receiving device to indicate successful data
reception (acknowledge the byte transfer).

Using the Inter-Integrated Circuit (IIC) Module on the HCS08 Microcontrollers

Freescale Semiconductor 59

In-Depth Reference Material

Thelogical implementation of the [1C busis designed to operate in a master slave relationship, alowing
direct communication between any two devices located on the 11C bus. Each device on the |1C bus must
have defined a unique address which will be used by the master device to establish communication with
the desired slave.

The master starts the communication by generating a start signal on the bus and then sending the unique
address of the selected slave device. This calling address should be acknowledged only by the slave with
the self address equal to the calling address. Communication between these devices continues until astop
condition is detected on the bus.

| | | | | | | | ! !
| | | | | | | | | | | | | | |
| |
o | frorforfosodfesfueforf o, [o imfmiﬂﬁ!‘mﬁﬂﬁ{ﬂmm L

START CALLING ADDRESS REALY ,ztr-: DATAEYTE NC: s#cp
SIGHAL WRITE BIT ACK SIGHAL

Figure 1. lIC Bus Transmission Signals

Thefirst byte after astart condition isused asthe calling address. Only the devicewith aself address equal
to the calling address should acknowledge this byte. The device should send or receive the following bytes
until a no acknowledge bit is found or a stop signal is generated on the bus.

The calling address uses the less significant bit to indicate if the master istrying to read from the slave
(LSB =1) or sending datato the slave (LSB = 0). If master isreading from the slave, the slave should start
transmitting when the master generates the next SCL pulses. If the Save is not fast enough to match the
master speed the slave can delay the master until ready to send or receive the next bytes by holding the
SCL low.

I1C can handle 100 kbps in standard mode, allowing faster speedsif the busis properly configured. The
HSCO08 11C modul e can manage data transfers up to clock/20 using reduced bus device loading to meet the
electrical characteristics of the bus for afaster transfer.

3.1 HCSO08 IIC Module Functional Description

I1C module functional description can be divided into two main sub-sections, when the module is acting
asthe 11C bus master and when the module is acting as a slave on the |1 C bus.

This functional description assumes the 11C module and I1C interrupts are aready enabled (11C control
register bits IICEN and 11 CIE set).

When the device is acting as the |1C master this device should start the communication.
» |IC should be configured for data transmission setting the I1C control register TX bit.

* Theuser setsthe l1C control register MST bit and the module generates a start signal on the 11C
bus.

Using the Inter-Integrated Circuit (1IC) Module on the HCS08 Microcontrollers

60 Freescale Semiconductor

In-Depth Reference Material

The user writes the desired ave address into the |1 C data register with the less significant bit
value according to the desired data direction (read from the slave LSB = 1, write to the lave
L SB = 0) the module sends the byte trough the 11C bus.

After the byte transmission is completed, the [1C module sets the 11C interrupt flag.

Interrupt handler routine should clear the interrupt flag, check if the byte was acknowledged by
the dlave and if so continue with the communication procedure.

If master is reading data from the slave:

The I1C control register TX bit should be cleared to enable the reception of data from the slave.

A dummy read to the I1C data register should be performed to generate the necessary SCL signals
on the I1C busto read the first data byte from the slave into the |1C dataregister.

After the byte is received, the acknowledge bit for this byte is automatically generated by the IIC
module if the I1C control register TXAK bit is clear; after that, the I1C interrupt flag is set.

Reading the |1 C dataregister will clock in the next byte.

The last byte read should not be acknowledged to indicate to the slave the reading is over. To
accomplish this, the 11C control register TXAK bit should be set before reading 11C data register.

If master is writing datato the lave:

The next byte should be written to the |1 C data register and the module will send the next byte
through the 11C bus, setting the I1C interrupt flag after the byte transmission is complete.

The lIC status register RXAK bit indicates if the slave acknowledged the byte transfer.

Clearing the 11C control register MST bit will generate the stop condition on the I1C bus.

When the deviceis acting as the slave device:

Interrupt flag will be set when the calling address is matched with the device self 11C address. The
acknowledge bit is handled by the I1C module.

Interrupt handler routine should clear the interrupt flag, and continue with the communication
procedure.

If thisisthe first byte received it is the address byte and the LSB bit indicates if the master wants
to read or write to this device, 11C control register TX bit should be set or cleared according to the
desired communication direction pointed by the |1C status register SRW bit when the address byte
ison the I1C data register.

If the device is reading data from the master, |1C data register should be read in order to free the
SCL line and allow the master to send the next byte.

If the deviceis sending data to the master, next byte should be written to the 11C dataregister in
order to free the SCL line and allow the master to read the next byte.

The lIC interrupt will be generated each time a byte transmission or reception is compl ete.
Communication will be finished when the master generates a stop condition on the bus.

Using the Inter-Integrated Circuit (IIC) Module on the HCS08 Microcontrollers

Freescale Semiconductor 61

PR 4

In-Depth Reference Material

NOTE

This example code was devel oped using the CodeWarrior IDE version 5.0
for HCO8 using Device Initialization, and was expressly made for the
MC9S08GB60.

Using the Inter-Integrated Circuit (1IC) Module on the HCS08 Microcontrollers

62 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Serial Communications
Interface (SCI) for the HCS08 Family
Microcontrollers

by: Laura Delgado
RTAC Americas
México 2005

1 Ove I‘VieW Table of Contents

Thisisaquick reference for using the serial
communications interface (SCI) module on an HCS08
microcontroller (MCU). Basic information about the
functional description and configuration optionsis
provided. This example may be modified to suit your
application — refer to the data sheet for your device.

AWN =

SCI Quick Reference

Because there are two SCI modules on some devices, there are two full sets of registers. In the register
names below, where there’s a small x, there would be a 1 or a 2 in your software to distinguish
the registers that are on SCI1 from those on SCI2.

SCIxBDL ‘ SBR7 | SBR6 SBR5
Baud rate = BUSCLK / (16 x SBR12:SBRO0)

SCIxBDH‘ SBR12| SBR11 ' SBR10 : SBR9 : SBRS‘

T T
| |
: : SBR4| SBR3 ' SBR2 : SBR1 : SBRO‘

SCIxCH1 \ LOOPs: SCISWAI: RSRC : M | WAKE : ILT : PE : PT \
Module configuration
SCIxCZ‘ TIE : TCIE : RIE : ILIE | TE : RE : RWU : SBK‘
H —
Local interrupt enables Tx and Rx enable Rx wakeup and send break
SCIxS1‘ TDRE: TC : RDRF: IDLE | OR : NF : FE : PF \
Interrupt flags Rx error flags
SCIXSZ‘ ! ' ' | ' BRK13: LINR ' RAF \

1 1 | 1
Configure LIN support options and monitor receiver activity

BRK13 and LINR are not available on all devices — see the data sheet for your device.

SCIXSS‘ R8 | T8 | TXDIR | ORIE | NEIE | FEIE PEIE ‘
h i — Local interrupt enables
Sth data bits Rx/Tx pin direction in P
single-wire mode
SC'X'D\ R7/T7 | R6/T6 | R5/T5 | R4/T4 | RO/TS | R2/T2 | "ROMTO |

| R1/T1

Read: Rx data; Write: Tx data

Overview.
Code Example and Explanation
SCI In-Depth Reference Material
Hardware Implementation.

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

SCI Module Initialization
1. Write: SCIXBDH:SCIxBDL
— to set baud rate

2. Write: SCIxC1
— to configure 1-wire/2-wire, 9/8-bit data, wakeup, and parity, if used.

3. Write: SCIxC2
— to configure interrupts
— to enable Rx and Tx
— to enable Rx wakeup (RWU), SBK sends break character

RWU, Rx wakeup, and SBK are used infrequently during initialization.

4. Write: SCIxC3
— to enable Rx error interrupt sources.
— Also controls pin direction in 1-wire modes.
— R8 and T8 only used in 9-bit data modes.

Module Use
Wait for TDRE (transmit data register empty flag), then write data to SCIxD
Wait for RDRF (receive data register full flag), then read data from SCIxD
A small number of applications will use RWU to manage automatic receiver wakeup, SBK to send break
characters, and R8 and T8 for 9-bit data.

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

In this example, the MCU will interact with a serial protocol interface (Hyperterminal) using the SCI
module. With the Hyperterminal, the user will send abyte to the MCU, the MCU will add an integer value
of 1 to the received data and return the result to the Hyperterminal. The configuration used for the
Hyperterminal is described under the Notes section. The application will configure the baud rate registers
to have 9600 bps, using the internal bus clock in its default mode (self-clocked mode / 8 MHZz).

The functions of the project SCI.mcp are:
* man— Endlessloop sending charactersto the SPI module
* MCU_init — Initializes MCU and customizes and enables the SCI module

* Vscilrx_isr — happens every time the SCI receiver full flag (RDRF flag) is detected, it loads the
data received and adds a value of 1, to then sends it back.

MCU _init isafunction generated by Device Initialization and islocated in MCUinit.c also generated by
the Device Initialization, which was included in the project.Following these steps, the user will run the
SCI1 modulein a 9600 bps baud rate:

1. Configurethe SCI control registers 1, 2, and 3:
SCI1C1 = 0x00; /* Loop mode disabled, disable SCI, Tx output not inverted,
8-hit characters, idle line wakeup, disable parity bit */
SCI1C2 = 0x2C; /* Enable SCI receive interrupts, Enable transmitter and

Using the Serial Communications Interface (SCI) for the HCS08 Family Microcontrollers

64 Freescale Semiconductor

Code Example and Explanation

receiver */
SCI1C3 = 0x00; /* Disable all error interrupts */
2. Configure the SCI baud rate register

Rk S R R I R IR e I R SRR kR b Sk kR R AR Sk S b S b R R I I

* BUSCLK 4 MHz *
* Baud Rate = -——-------------———~ = —————— = 9600 bps *
* [SBR12:SBR0O] x 16 26 x 16 *

IR I bk S S Sk S I S kS I I R b I S R I R I

/* For this example, the internal bus clock is used,
ICGOUT
BUSCLOCK = —-—-—-—----——-—

The default ICGOUT is 8MHz (Self-clocked mode), therefore
BUSCLOCK is 4 MHz. In order to get a 9600 bps baud rate,

following the baud rate formula in MC9S08GB60, the value

for [SBR12:SBRO] is 26 */

SCI1BDH 0x00; // SCI1BDH has [SBR12:SBR8] bits and SCI1BDL has [SBR7:SBRO],
SCI1BDL = O0x1A; // altogether SCI1BDH and SCI1BHL control the 13 bit
// prescale divisor for the SCI module baud rate.

From this point on, the code execution is performed inside the SCI receive interrupt service routine.

3. Define contents of the interrupt function

__interrupt void Vscilrx_isr(void)

4. Clear SCI receiver full interrupt flag.

SCI1Sl; // Acknowledge SCI Receiver Full Flag

5. Read thereceived datain aglobal variable called ReceivedByte and increment it.

ReceivedByte = SCI1D; // Load received data into a global variable
ReceivedByte += 1; // Increment received data by 1

6. Wait for the transmitter to be empty, so that we can queue a new transmission.
while (SCI1S1_TDRE == 0); // Wait for the transmitter to be empty

7. Store the new computed byte in the SCI data register.

SCI1D = ReceivedByte; // Stores new data to be transmitted

Thisinterrupt function is automatically generated and initialized in avector array in MCUinit.c by the

Device Initialization tool if the option is enabled. The user must define its contents.

Using the Serial Communications Interface (SCI) for the HCS08 Family Microcontrollers

Freescale Semiconductor

65

SCI In-Depth Reference Material

3 SCI In-Depth Reference Material

The SCI alows full-duplex, asynchronous, NRZ serial communication among the MCU and remote
devices, including other microcontrollers. Some features of this module are:

* Full-duplex operation.

» Standard mark/space non-return-to-zero (NRZ) format.

* Programmable baud rate (13-bit modulo driver).

* Programmable 8-bit or 9-bit character length.

» Two receiver wakeup methods: idle line wakeup and address mark wakeup.

* Interrupt driven operations with eight interrupt flags: transmitter empty, transmission complete,
receiver full, idle receiver input, receiver overrun, noise error, framing error and parity error.

The data transmission and reception functions are handled by one logical register: the SCI data register
(SCIxD). The SCIxD is actually two separate registers: one is written to define the next data to be
transmitted, and the other one is read to get the last data received. This allows the SCI transmitter and
receiver blocks to operate independently.

Physically, two MCU pinsare used: thetransmission pin (TxD) and the reception pin (RxD). Both of these
pins transfer data to and from the SCIxXD. The SCI module controls transmission and reception using its
status interrupt flags. During normal operation, if the transmit buffer is empty, the TDRE flag (transmit
dataregister empty flag) is set and the MCU is permitted to write the next character to be transmitted. In
the same way, if the receiver buffer isfull, the RDRF flag (receiver dataregister full flag) is set and the
character received can be processed. More conditions are notified with the modul€’s flags, these are
discussed and illustrated in the example application.

Both transmission and reception blocks work at the same baud rate. The SCI module has a 13-bit modulo
driver that allows awide range of optionsfor baud rate generation. The clock source for the SCI baud rate
generator isthe bus-rate clock. Depending on the M CU, the bus-rate clock source can be configured to be
internal, external, etc. Refer to your device's data sheet to learn more about the bus-rate clock.

Many microcontrollersin the HCS08 Family have more than one SCI modules. The SCI modules are
referred to as SCIx. While programming, register names should include placeholder charactersto identify
which of the SCI modulesis being referenced.

Using the Serial Communications Interface (SCI) for the HCS08 Family Microcontrollers

66 Freescale Semiconductor

Hardware Implementation

4 Hardware Implementation

The schematic below shows the hardware used to exercise the code provided.

4
2 PTeoikpIPD PTCOM«D2 —
4| FTALZKBIP1 PTCA/FxDE 5 ”
45| PTA2/KBIPZ PTC2/S0A X
=5 | PTA3KBIPS PTCHSCL [5
a1 | FTA4/KBIPS PTCS J_—EI_O
7| PTA6/KBIPS PTCS o— — W—gT—
#—p=—| PTAGSKBIPG FTCE [| N
#— PTAT/KBIFT PTCT —— AT
%32 PTBO/ADD PTOOTPMICHD [oa— o
%55 FTB1/AD1 PTD1TPMICHI 57— T
¥—35| PTB2/ADE PTOZTPMICHE 55— e
#—o—| PTEMAD PTOXTPRECHD X o
3| PTB4/AD4 PTOTPRECH] 5a—X
35| PTBS/ADS PTDSTPMECHZ 57— OBg
5| PTBG/ADE PTOGTPRICHI 53—
#—=— PTB7/A07 PTO7/TPRECHE 25—
35 PTGO/BKGOMS PTEDTSD1 e
#—g| PTG1ATAL PTEV/RxDN (7
| PTGL/ENTAL PTELEE (1 12 1z
s—ga| PTG3 PTEIMISO (3 s RiIN - ETOOT (5
%5 PG4 PTE4MOS |5 #—" RZIN RIOUT
g2 FTi5 FTESISPSCK 0" 14
#—=— PTG6 PTES [| TN TIOT
#—=— PTG7 PTE? [W THN TROOT F—¥
VB PTFO e J_—; Ci+
o sw e e
- L B s PTF3 [H3 i
[e p— | 3 2
' ! path e T 5 “
o
35 el PTF? (2 i M 1SE
“wizad —
=1 -0
5 o—L | RESET IR 2 L
= ACAE0% G BE0
NOTE

» The software of this note was devel oped using the CodeWarrior Development Studio for HC(S)08
version 5.0 using Device Initialization and was expressly made for the MC9S08GB60. There may
be changes needed in the code to be used in other MCUs.

* The hardware used for the example is shown under the Schematics section.
* The Hyperterminal was configured to have:

— A baud rate of 9600 bps

— 8-bit mode

— No parity checked

— 1 stop bit

— No flow control

* Not al MCU packages have the RxD and TxD physical pins, even though they have the SCI
module.

* It'simportant for the user to verify the SCI module availability for the microcontroller, because
not every part in the HCS08 Family has one. See the data sheet for your device.

Using the Serial Communications Interface (SCI) for the HCS08 Family Microcontrollers

Freescale Semiconductor 67

Hardware Implementation

Using the Serial Communications Interface (SCI) for the HCS08 Family Microcontrollers

68 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Serial Peripheral Interface
(SPI) for the HCS08 Family
Microcontrollers

by: Rogelio Gonzalez Coppel
RTAC Americas
México 2005

1 Overview

Table of Contents

Thisisaquick reference for using the serial peripheral 1 Overview............................... 69
interface (SPI) module on an HCS08 microcontroller 2 Code Example and Explanation 70

MCU) Basic information about the functional 2.1 SPIMasterProject. 70
(; 2.2 SPISlave Project. 71

description and configuration optionsis provided. The
following examples may be modified to suit your
application — refer to the data sheet for your device.

SPI Quick Reference
Because there are two SPI modules on some devices, there may be two full sets of registers. In the register
names below, where there’s a small x, there would be a 1 or a 2 in your software to distinguish
the registers that are on SPI1 from those on SPI2.
SPIxC1 | SPIE : SPE ' SPTIE : MSTR | CPOL : CPHA : SSOE : LSBFE \

1
SPIE — enables the interrupts generated by the SPRF bit (receiver interrupt) and MODF bit
SPE — enables the SPI module
SPTIE — enables the interrupts generated by the SPTEF bit (transmitter interrupt)
MSTR — selects master mode (1) or slave mode (0) operation
CPOL — configures the SPI clock signal to idle high (1) or low (0)
CPHA — selects clock phase format so first edge occurs at start or middle of data transfer
SSOE — slave select output enable
LSBFE — LSB first (shifter direction)
SPIxC2 ' ' 'MODFEN|BIDIROE | 'SPISWAI ' SPCO

MODFEN — enables master mode-fault function

BIDIROE — enables bidirectional mode output
SPISWAI — SPI stop in wait mode
SPCO — enables single-wire bidirectional SPI operation

SPIXBR | | SPPR2 | SPPR1 ' SPPRO | ' SPR2 | SPR1 | SPRO |
SPPRI[2:0] — selects one of eight divisors for the SPI baud rate prescaler
SPR[2:0] — selects one of eight divisors for the SPI baud rate divider

SPIxS | SPRF | ' SPTEF | MODF | : : : |

SPRF — flags when the receiver’s data register becomes full
SPTEF — flags when the transmitter's data register becomes empty
MODF — indicates mode-fault error detected on data input

SPIXD | SPID[7:0] |
Read: Rx data; Write: Tx data

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

2.1 SPI Master Project

The project SPI_Master implements the SPI in master mode. The main functions are:
* main — Endlessloop sending charactersto the SPI module
* MCU_init — Configures the hardware and the SPI module as a master
* Vspil isr — Responds to the “ Receive Full” interrupt
» SPISendChar — Function used to send a byte

MCU _init is afunction generated by deviceinitialization and is located in MCUinit.c also generated by
the device initialization, which was included in the project.

This example configures the MCU as a single master in the SPI bus:

SPI1C1
SPI1C2

The SPI clock is configured to run at a bit rate of 64 uswith a5 MHz bus clock. To obtain a 15.625 kHz
(64 us) SPI bit rate the calculation:

0xDO0;
0x00;

5MHz

= 15.625 kH
(Prescaler Divisor) x (Rate Divisor) z
(Prescaler Divisor) x (Rate Divisor) = % =320 = 5x64

Given this, SPIBR needs to be configured with avalue of 0x45 hex to achieve a 15.625 kHz SPI bit rate
with a5 MHz bus clock.

SPI1BR = 0x45; /* 64us SPI Clock @ 5MHz Bus Clock */

The SPI moduleis normally used with various slaves. To communicate with aspecific save, its SS signal
must below and the SS signal s from its neighboring slaves must be high to avoid collisions. Therefore, the
SSsignal must be generated by software using a GPIO. This approach must also be used for datatransfers
of more than one byte because a SPI transaction must be framed within a slave select low-level.

In this example, the master will only interface with one slave. The SSline isimplemented using a GPIO
pin to manage it.

PTED_PTED2 = 1; /* 88 Initial State will be 1 (no activity on SPI) */
PTEDD_PTEDD2 = 1; /* Configure SS as output */

Using the Serial Peripheral Interface (SPI) for the HCS08 Family Microcontrollers

70 Freescale Semiconductor

Code Example and Explanation

The SPISendChar function, which is used to send a byte through the SPI module. It waits for the transmit
buffer to be empty and then pullsthe SSline of the device down and then moves the datainto the transmit
buffer to start transmission.

void SPISendChar (unsigned char data) {

while (!SPI1S_SPTEF) ; /* walt until transmit buffer is empty*/
PTED_PTED2 = 0; /* Slave Select set in low*/
SPI1D = data; /* Transmit counter*/

}

Vspil isr (receive full interrupt function) waits for the clock to go low, and then puts the SS line high.
Then, it acknowledges the interrupt by reading SPI1S and SP1D. The SPI module has only one interrupt
vector to service all events associated with the SPI system (receive full, transmit buffer empty and mode
fault). Becausetransmit interrupts and mode fault are disabled for thisexample, only receiveinterruptswill
be generated. If all interrupts are enabled, the SPI interrupt service routine (I1SR) must check the flag bits
to determine what event caused the interrupt.

__interrupt void Vspil_isr (void)

{

while (PTED_PTED5) ; /*wait for clock to return no default*/
PTED_PTED2 = 1; /*Set Slave Select high*/

SPI1S; /*Acknowledge flag*/

SPI1D; /*Acknowledge flag*/

PTFD_PTFD1 = ~PTFD_PTFD1l; /* Toggle LED*/

}

Thisinterrupt function is automatically generated and initialized in a vector array in MCUinit.c by the
Device Initialization tool if the option is enabled. The user must define its contents.

Further details of the actual coding are in the project.

2.2 SPI Slave Project

The project SPI_Slave implements the SPI in slave mode. The main functions are:
* main — Endless loop waiting to receive characters through the SPI module
* MCU _init — Configures the hardware and the SPI module as aslave
e Vspil isr— Function used to receive a byte

MCU _init isafunction generated by deviceinitialization and islocated in MCUinit.c also generated by
the device initialization, which was included in the project.

Using the Serial Peripheral Interface (SPI) for the HCS08 Family Microcontrollers

Freescale Semiconductor 71

Code Example and Explanation

This project simply configures the SPI as a slave. When the SPI modul e receives a byte, it interrupts the
MCU and executes the Vspil _isr function, which outputs on GPIO port F the byte received.

Please refer to the source code for more details.

NOTE

* This software was developed using the CodeWarrior Development
Studio for HC(S)08 version 5.0 using Device Initialization.

» Both projects were tested using MC9S08GB60 running with internal
oscillator.

» SPl isaprotocol designed for in-board communication. However, if a
cable is needed, be sure that it is not longer than 20 cm.

Using the Serial Peripheral Interface (SPI) for the HCS08 Family Microcontrollers

72 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the 8-Bit Modulo Timer (MTIM) for
the HCS08 Family Microcontrollers

by: Miguel Agnesi Meléndez

RTAC Americas
México 2005
1 Overview Table of Contents
1 Overview., 73
Thisisaquick reference for enabling the 8-bit modulo 2 Code Example and Explanation 74

timer (MTIM) functionality on an HCS08
microcontroller (MCU). Basic information about the
functional description and configuration optionsis
provided. This example may be modified to suit your
application — see the data sheet for your device.

The HCS08 8-bit MTIM clock input can be selected
from the bus clock, an internal fixed clock, therising
edge of an external reference, or the falling edge of the
external reference. To make the counter more flexible, a
prescaler can be enabled to generate larger time bases
using this 8-hit counter. The prescaler can be configured
todividethe selected input clock by 1, 2, 4, 8, 16, 32, 64,
and 256.

The counter allows user firmware to reset, stop, and
select the counter clock source, as well as the clock
source prescaler value, in an easy manner.

MTIM Quick Reference

MTIMSC‘ TOF | TOIE ' TRSTI TSTP ‘ | | |

Overflow status, interrupt enable, counter reset, and stop

MTIMCLK \ . . CLKS \ PS \

Counter clock select and prescaler select

MTIMCNT \ COUNT ‘

Current counter value

MTIMMOD \ MOD ‘

Counter modulo value

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

The counter overflow is generated after the counter reaches the value in the modulo register, or, if the
modulo register is 0x00, when the counter reaches the maximum 8-bit value (OxFF). The TOF flag
becomes set as the counter changesto 0x00. If the interrupt enable bit is set, an interrupt will be generated.

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

Thisexample usesthe HCS08 modulo timer (MTIM) to generate asquare wave on PTB6 using the modulo
timer overflow interrupt.

Depending on the selected input clock and prescaler for the M TIM, the desired overflow time value can be
calculated according to the next formula:

Clock source prescaler |, (

MTIMMOD value+1)
Input clock frequency

Remember, MTIMMOD = 0x00 will set the modul o timer in afree running mode. Noticethe(MTIMMOD
value +1) is due to the behavior of the counter: when the counter equals the valuein the MTIMMOD
register it waits until the next MTIM clock pulse to set the TOF flag and reset the counter as shown in
Figure 1.

selected
docksource | L LT UULLL

ooy [LT LT L 1T LT 1

MTIMCNT | oxA7 | oxas | oxae | oaa | o0 | oo |

TOF |

MTIMMOD: | OXAA |
Figure 1.

In thisexample, the device will be configured with abus clock running at 4 MHz, which isthe default bus
frequency for the device. The bus will be used as the input clock for the module using a clock divider of
256. With these configuration values, it is possible to obtain an overflow interrupt ranging from 128 usto
16.32 ms, depending on the MTIMMOD register value.

_ 26, (1+1)=.000128s _26_, (255+1) =.0163s
4000000 4000000

MTIMMOD =1 MTIMMOD = 255

Using the 8-Bit Modulo Timer (MTIM) for the HCS08 Family Microcontrollers

74 Freescale Semiconductor

Code Example and Explanation

The actual square wave frequency will be affected due to the internal oscillator 2% deviation and the
interrupt latency time.

The initialization routine is contained in the MCU _init function. MCU _init is afunction generated by
deviceinitialization and is located in MCUinit.c, also generated by the deviceinitiaization, which is
included in the project. It sets the PTB6 pin as output, configures the module timer to use the bus clock
divided by 256, setting the modulo timer to OxFF, enables the modulo timer interrupt and finally startsthe
timer. Thisresultsinan MTIM time out period of 7.68 msand a PWM period of approximately 15.36 ms.

PTBDD |: (unsigned char)0x40; /* Set PTB6 as output */

MTIMCLK = 0x08; /* Bus clock 256 divider */

MTIMMOD = 0x77; /* Count to OxFF */

MTIMSC = 0x60; /* Enable overflow interrupt and start counter */

The interrupt handler toggles the PTB6 pin and clears the TOF flag.

__interrupt void Vmtim_isr (void)

{
PTBD_PTBD6 = ~PTBD_PTBD6; /* Toggle the PTB pin */
MTIMSC; /* Clear the TOF flag */

MTIMSC_TOF

1l
(@]

}

Thisinterrupt function is automatically generated and initialized in avector array in MCUinit.c by the
device initialization tool if the option is enabled. The user must define its contents.

By modifying the MTIMMOD value, the overflow can be generated at any counter value desired.

NOTE

This example code was devel oped using the CodeWarrior IDE version 5.0
for M68BHCO8, and was expressly made for the M C9S08QGS.

Using the 8-Bit Modulo Timer (MTIM) for the HCS08 Family Microcontrollers

Freescale Semiconductor 75

Code Example and Explanation

Using the 8-Bit Modulo Timer (MTIM) for the HCS08 Family Microcontrollers

76 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Real-Time Interrupt (RTI)
Function for HCS08 the Microcontrollers

by: Oscar Luna Gonzalez
RTAC Americas
México 2005

1 Overview

Thisisaquick reference for using the real-time interrupt
(RTI) function on an HCS08 microcontroller (MCU).
Basic information about the functional description and
configuration optionsis provided. The following
examples may be modified to suit your application —
refer to the data sheet for your device.

The RTI can be used to generate a hardware interrupt at
fixed periodic rate. The RTI function in MC9S08QG8
hastwo source clock choices, the 1-kHz internal clock or
an external clock (if available). The RTICLKS bit in
SRTISC isused to select the RTI clock source. Both
clock sources can be used whenthe MCU isin run, wait,
or any stop mode.

After the RTI moduleis enabled (by setting RTIE = 1),
thisinterrupt will occur at the rate selected by the
SRTISC register. At the end of the RTI time-out period,
the RTIF flag is set and anew RTI time-out period starts
immediately. Before starting to use the RTI module, the
user must select which clock reference will be used to
select the RTI clock source.

Table of Contents

1 Overview., 77
2 Code Example and Explanation 78
3 Hardware Implementation. 79

RTI Function Quick Reference

SRTISC | RTIF :RTIACK :RTICLKs: RTIE

RTIS \

RTIF — flags a time-out of the RTI timer; setting this flag will clear the interrupt flag
RTIACK — setting this bit will acknowledge real-time interrupt requests
RTICLKS — selects the clock source to be used by the RTI module (external/internal)

RTIE — enables real-time interrupts

RTIS — sets the period for the RTI based on the internal or external clock source

© Freescale Semiconductor, Inc., 2005. All rights reserved.

freescale"

semiconductor

Code Example and Explanation

The data sheet for your device shows the distribution of the different RTI clock sources.

2 Code Example and Explanation
This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

This example shows how to generate areal-time clock (RTC) through the use of the 1-kHz internal
reference and three LEDs. Each LED will indicate the status of its assigned time function (hours, minutes,
and seconds, respectively).

Following these steps, the user will be able to use the RTI module for this example:
1. Configure the microcontroller’s pins as outputs for initialization purposes

PTBD_PTBD1 = 1; /* Turn Hour LED Off */
PTBDD_PTBDD1 = 1; /* Initializes Port B bit 0 as output*/
PTBD_PTBD2 = 1; /* Turn Minute LED Off */
PTBDD_PTBDD2 = 1; /* Initializes Port B bit 1 as output*/
PTBD_PTBD3 = 1; /* Turn Second LED Off */
PTBDD_PTBDD3 = 1; /* Initializes Port B bit 2 as output*/

2. Definealiasfor each pin port for readability purposes

/* Defines */

#define LED_Hour PTBD_PTBD1
#define LED_Minute PTBD_PTBD2
#define LED_Seconds PTBD_PTBD3

3. Configure the rea-time interrupt register (SRTISC). See the data sheet for a detailed description
of the different RTI interrupt periods.

SRTISC = 0x57; /* Set delay time to interrupt every 1.024s, Real time
INTERRUPT ENABLE, RTI request clock source is internal
1-KHz oscillator, ACK = 1 to clear RTIF flag */

4. Declare RTI interrupt Service Routine

__interrupt void Vrti_isr (void)/* Declare RTI vector address interrupt */
/* RTI Vector Address = 23 */

Because an interrupt-based algorithm is being implemented, the global interrupt enable mask has to be
cleared asfollows:

EnableInterrupts; /* __asm CLI; */

From this point on, the code execution is performed inside the RTI interrupt service routine. The code
inside does the following:

1. Clear RTI interrupt flag.

SRTISC_RTIACK = 1; /* clear RTIF bit */

2. Next the ISR will contain the code that emulates the RTC (Real-Time Clock) functionality.

Using the Real-Time Interrupt (RTI) Function for HCS08 the Microcontrollers

78 Freescale Semiconductor

Hardware Implementation

NOTE

The following considerations listed must be taken to assure a proper
functionality of the RTI module:

* This example code was developed using the CodeWarrior IDE version 5.0 for the HCO8 family
using Device Initialization, and was expressly made for the MC9S08QG8 using the 16-pin
package. There may be changes needed in the code to be used with other HCS08 Families.

* The hardware used for the example is shown under the Schematics section.

* The RTI module in this application example takes reference from internal 1-kHz clock source;
this 1-kHz internal reference has a 30% margin error. This margin error must be considered by the
user because this 30% margin error was characterized at 3.0 V, 25°C and will vary at different

voltage and temperatures. Please see the data sheet for your device.

* RTI acknowledge flag must be written with a1 inside the interrupt service routine to clear

real-time interrupt flag (RTIF).
* RTI module has only seven interrupt periods.

3 Hardware Implementation

The schematic below shows the hardware used to exercise the code provided.

U4

vee
T8 pTAQKBIPOTRMCHO/ADROIACHP= PTBOIKEIP4RADIADPA [~ 2—1 RT3 o
15 oy LT , <D 1 i
PTA1/KBIP1/ADP1IACHP- PTE1/KBIPSITXD/ADPS
O praoiKBP2ISDAIADR PTBZ/KBIPE/SPSCKIADPE HOURS
D4
5
o3 praamepascLADR PTEA/KBIPTIMOSUADPT l“i
el 2| PTAACMPO/BKGDINS FrBAMSO o 2
. e MINUTES
i PTESITPMCHT [F—0O
4 L N 3 D3
SRl G i - PTB&/SDAKTAL ——0 h
10uF 0.1uF Vi 3 5
PTBTISCLEXTAL
ol ; 33 SECONDS

& i RESET
E MCO508068

Using the Real-Time Interrupt (RTI) Function for HCS08 the Microcontrollers

Freescale Semiconductor

79

Hardware Implementation

Using the Real-Time Interrupt (RTI) Function for HCS08 the Microcontrollers

80 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Using the Input Capture and Output
Compare Functions for the HCS08
Family Microcontrollers

by: Andrés Barrilado Gonzalez

1

Thisisaquick reference for using the timer module on

RTAC Americas
México 2005

Overview

an HCS08 microcontroller (MCU). Basic information
about the functional description and configuration
options is provided. The following examples may be
modified to suit your application — refer to the data
sheet for your device.

Table of Contents

1 Overview. 81
2 Code Example and Explanation 82
2.1 Input Capture Code Example 82
2.2 Output Compare Code Example 83
3 Hardware Implementation. 84

TPM Quick Reference

Because there is more than one TPM modules on some devices, there are two full sets of registers. In the
register names below, where there’s a small x, there would be a 1 or a 2 in your software to distinguish
the registers that are on TPM1 from those on TPM2. A small n in the register names below is a place-holder

for the channel number.

TPMxSC| TOF = TOIE :CPWMs: CLKSB \ CLKSA: PS2 | PSt : PSO \

Interrupt enable and module configuration

TPMxCNTH| BIT15: BIT14: BIT13 : BIT12 \ BIT11 : BIT10 : BIT9 : BITS \

TPMxCNTL | BIT7 | BITé |, BIT5 BIT4 | BIT3 | BIT2 | BIT1 | BITO |
Any write to TPMCNTH or TPMCNTL clears the 16-bit counter

TPMxCNTH| BIT15: BIT14: BIT13 : BIT12 \ BIT11 : BIT10 : BIT9 : BIT8 \

TPMxCNTL | BIT7 | BIT6 | BIT5 , BIT4 | BIT3 |, BIT2 , BTt . BITO |
Modulo value for TPM module; read or write

TPManSC| CHnF: CHnIE : MSnB : MSnA \ ELSnB : ELSnA: : |
Interrupt enable and module configuration

TPManVH| BIT15: BIT14: BIT13 : BIT12 \ BIT11 : BIT10 : BIT9 : BITS \

TPManVL| BIT7 : BIT6é ' BIT5 ' BIT4 \ BIT3 ' BIT2 : BIT1 : BITO \

1
Captured TPM counter for input capture function OR output compare value

for output compare of PWM function

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved.

freescale"

semiconductor

Code Example and Explanation

The timer/PWM module (TPM) in the HCS08s includes two independent, 16-bit counters, each with
several channels that can be configured to work as input capture, output compare, or PWM. Each base
counter isconsidered an independent TPM module. When configured for input capture, an event registered
at the channel-related pin will “store” the timer value at the time of the event. When configured for output
compare, the channel-related pin can be set, cleared, or toggled at a given value of the timer. When in
PWM-mode, a center- or edge-aligned PWM signal can be sent through the channel-related pin with a
specific period and duty-cycle. For further information on the TPM differences between each family of
microcontrollers, and for information on channel-related pins, refer to the data sheet for your device.

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

Two examples have been included: Thefirst one uses the input capture configuration to output the higher
value of the timer through a port; The other one is configured to use the output compare configuration to
toggle an LED.

All examples contain the same functions:
* man— Cyclesendlessly until an interruption occurs.

* MCU_init— Configures hardware and the TPM module to perform as expected in each example.
Please refer to each example for specifics of this function.

* Vipmlchl isr — Respondsto TPM interruptions according to what is expected in each example.
Please refer to each example for specifics of this function.

MCU _init isafunction generated by deviceinitialization and islocated in MCUinit.c also generated by
the deviceinitialization, which isincluded in both projects.

2.1 Input Capture Code Example

Inthisexample, channel 1 of TPM 1 isconfigured to work ininput capture mode. When arising-edge event
is captured through the channel-specific pin, the higher part of the value of the timer at that time is output
through port F using an interrupt-based approach. Using a4 MHz system-bus clock, the TPM is prescaled
to overflow approximately every two seconds (Prescaler = 7). To make these settings, the following
registers are configured by the device initialization tool.

TPM1IMOD = 0x00; /* does not have a modulus value, hence
the counter counts up to OXFFFF */
/* TPM1C1SC: CH1F=0,CH1IE=1,MS1B=0,MS1A=0,ELS1B=0,ELS1A=1 */
TPM1C1SC = 0x44; /* Enable channel interrupt, configures input capture

Mode and rising edge event as desired for interrupt*/

/* TPM1SC: TOF=0,TOIE=0,CPWMS=0,CLKSB=0,CLKSA=1,PS2=1,PS1l=1,PS0=1 */

TPM1SC = 0x0F; /* Disable overflow interrupt, selects self-clocked

Using the Input Capture and Output Compare Functions for the HCS08 Family Microcontrollers

82 Freescale Semiconductor

Code Example and Explanation

Mode, prescaler of 128%*/

To estimate the overflow time when setting the timer, the following formulais used:

1
TPMclk

When the modulo value is not set, the value 65535 (OxFFFF) should be used instead for this calculation.

For thisexample, a4 MHz TPM clock is used (that of the system bus), the modulo value is not set, and a
prescaler value of 128 is used:

OverflowT = Modulo* Pr escaler *

1

OverflowT = 65535*128* ———
4000000

OverflowT = 2.09712

This means the timer will overflow approximately every 2 seconds.

After TPM1 and channel 1 of the TPM 1 are configured, and if arising edge in the channel-specific pinis
detected, a service routine must clear the channel overflow flag by reading the flag first and then writing
a0toit. Inthisexample, the high part of the value stored in TPM1C1V is output through port F.

__interrupt void Vtpmlchl_isr(void)

{

TPM1C1SC_CHI1F = 0; /* ACK channel interrupt */
/* Reading flag, then write a 0 to the bit. */
PTFD = TPM1C1VH; /* Output high timer result through PTF */
}

Thisinterrupt function is automatically generated and initialized in avector array in MCUinit.c by the
device initialization tool if the option is enabled. The user must define its contents.

Please refer to the source code for more details.

2.2 Output Compare Code Example

In this example, channel 1 of TPM 1is configured for output compare. It is configured to toggle an LED,
keeping it roughly half-a-second on and half-a-second off using a4 MHz system bus clock as clock source.
The TPM prescaler valueis set to be 5. The timer 1 modulo registers (TPM1MODH: TPM1MODL) and
the timer 1 channel 1 value registers (TPM1C1VH: TPM1C1VL) have remained untouched, using the
default value of O. Interruptions are enabled. To make these settings, the following registersare configured
by the deviceinitialization tool.

TPM1IMOD = OxXFFFF; /* the counter counts up to OXFFFF */

TPM1C1V = 0x00; /*Channel interrupt will happen when counter matches

Using the Input Capture and Output Compare Functions for the HCS08 Family Microcontrollers

Freescale Semiconductor 83

Hardware Implementation

0x00 value*/
TPM1C1SC = 0x54; /* Enable channel interrupt, configures output compare

Mode and toggling of channel pin*/

TPM1SC = 0x0D; /* Disable overflow interrupt, selects self-clocked

Mode, prescaler of 32*/

After TPM 1 and channel 1 of TPM1 are configured, every time the channel overflows, the interruption
service routine will be executed. In it, the channel interrupt flag will by cleared by reading the flag first
and then writing a0 to it.

__interrupt void Vtpmlchl_isr(void)

{

TPM1C1SC_CH1F = 0; /* ACK channel interrupt */
/* Reading flag, then write a 0 to the bit. */
PTFD_PTFD2 = ~ PTFD_PTFD2;
}

Thisinterrupt function is automatically generated and initialized in avector array in MCUinit.c by the
device initialization tool if the option is enabled. The user must define its contents.

Please refer to the source code for more details.

3 Hardware Implementation

The schematic below shows the hardware used to exercise the code provided.

Using the Input Capture and Output Compare Functions for the HCS08 Family Microcontrollers

84 Freescale Semiconductor

Hardware Implementation

o
o2 | praoiaie FTCOTDZ [0
O FTAUKEIP! FTCI/RADZ 0 VoD
o2 FTa2KEIF2 FTC2/SDA 50 g
O—2 PTaaKEIPS PTCHECL o—0
o5 PTAYKEIP 4 g0
o2 Frasieies s o -
Se | FTABKEIRS FTCS g o RESISTOR
o2 eTaTKBIPT o1 o o
o33 PTE0ADO PTDOTRMICHD [F—0 VL
o—3 FTETADT PTDITPMICH! 22— 5 o]
O FTBZ/ADZ FTDZTPMICHZ —5g—0
C—37| PTB3/AD3 PTO3TPMZCHD 55—
O—35g | PTB4/AD4 PTD4/TPMICHT —55—0
O—3i FTES/ADS FTDSTPNICHE (5o
o2 FTeiians FTDSTRMICHS [—or—0
o2 FranianT PTDTARMICHS [0 FEEEEEEE
FTEQTAD! [0
FTEL/RAD! [.
55 (10 RN
FTEZMISO oD
FTE4HOS) 2D
PTESISPSCK [0
FTES 50O
FTET 20 = 4
4
PTFO
PTF1 [
FTF2 [
FTF2 [
PTF4 [
FTFE [
FTFS 2
FTFT
ra &0
Figure 1. Schematic of Circuit Used in Example 1
s
VoD
K
PTAQ/KBIPD PTCOTHD2 H—0
PTALKEIPT PTG1/RxD2 [+—0 2
PTAZHEIPZ H—o 3
PTA3MEBIPE
PTA4/KBIP4
PTAE/EIPE
PTA/KBIPE 4
PTAT/BIPT
25
PTB0/ADD FTOOTFHICHD 50
PTET FTDNTEMICHT (52
PTEZIADZ FTDZTPIICHZ 550
PTB3/AD3 PTDHTPH2CHD 52—
PTB4/AD4 PTD4TPH2CH! 50

PTDSTPMICH2 5,0
PTES PTD&TPMICHE 550
PTET/ADT PTDT/TPMICHY —==—0

PTGIVEBKGD/ME FTEQT=D 50O
G/ PTEN/R=D1 570
FTEZES

PTG3 FTEZNIED [0
TG4 FTE4NOSI 55—
PTGS PTES/SPECK 53
PTGE FTES o0
PTGT PTE7 =0

FTFO %ﬂ
FTFi 50
FTFZ O
FTF3 2O

RESET IRQ — —H
CaG08GE3D

Figure 2. Schematic of Circuit Used in Example 2

Using the Input Capture and Output Compare Functions for the HCS08 Family Microcontrollers

Freescale Semiconductor 85

Hardware Implementation

NOTE

It isimportant to notice that the software presented here was devel oped
using the CodeWarrior Development Studio for HC(S)08 version 5.0 using
Device Initialization and tested using a MC9S08GB60 running in
self-clocked mode. Coding changes may be needed to initialize another
MCU. It isimportant to consider that every microcontroller needs an
initialization code which depends on the application and the microcontroller
itself.

Using the Input Capture and Output Compare Functions for the HCS08 Family Microcontrollers
86 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Generating PWM Signals Using the

HCS08 Timer (TPM)

by: Miguel Agnesi Meléndez

1

RTAC Americas
México 2005
i Table of Contents
Overview
1T OVerview.o i 87
This isaquick reference for enabling the PWM 2 Code Example and Expl'anation 88
functionality of the timer module for an HCS08 21 Sﬁr’]‘eézxgo?’\é“ﬂs'ggi:zs ”
mlcrc_)controller _(M_CU). Basic information a_\bout_the 22 Generating Two PWM Signals
functional description and configuration optionsis While Changing the Duty Cycle. 88
provided_ This exarnp|e may be modified to suit your 3 In-Depth Reference Material. 89
application — refer to the data sheet for your device.
TPM Quick Reference
Because there is more than one TPM modules on some devices, there are two full sets of registers. In the
register names below, where there’s a small x, there wou e a1 or a2 in your software to distinguis
gi bel here there’ Il x, th Id be a 1 2iny f distinguish
the registers that are on TPM1 from those on TPM2. A small n in a register name below is a place-holder
for the channel number.
TPMxSC \ TOF : TOIE :CPWMs: CLKSB \ CLKSA : PS2 : PS1 : PSO \
Interrupt enable and module configuration
TPMXCNTH \ BIT15 : BIT14 : BIT13 : BIT12 \ BIT11 : BIT10 : BIT9 : BIT8 \
TPMXCNTL | BIT7 | BITé , BIT5 BIT4 | BIT3 | BIT2 | BIT1 |, BITO |
Any write to TPMCNTH or TPMCNTL clears the 16-bit counter
TPMXCNTH \ BIT15 : BIT14 : BIT13 : BIT12 \ BIT11 : BIT10 : BIT9 : BIT8 \
TPMXCNTL | BIT7 | BITé |, BIT5 BIT4 | BIT3 | BIT2 | BIT1 |, BITO |
Modulo value for TPM module; read or write
TPManSC‘ CHnF: CHnIE : MSnB : MSnA \ ELSnB : ELSnA: : |
Interrupt enable and module configuration
TPMxCnVH \ BIT15 : BIT14 : BIT13 : BIT12 \ BIT11 : BIT10 : BIT9 : BIT8 \
TPMxCnVL \ BIT7 ' BIT6 ' BIT5 ' BIT4 \ BIT3 : BIT2 : BIT1 : BITO \
Captured TPM counter of input capture function OR output compare value
for output compare of PWM function
© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

|
y

'
A

Code Example and Explanation

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

2.1 Generating PWM Signals with Common Duty Cycles

Configuring the TPM to generate PWM signals with common duty cyclesis straightforward:

1. Load the desired period for all channels on the base timer TPMMOD register.
2. Load the desired duty cycle for each channel on the TPMCnV registers.

3. Select the PWM functionality for each channel that will be used to generate PWM by using the
TPMCnSC register of each channel.

4. Select the PWM mode, input clock and prescaler for the main timer in the TPM SC register.

2.2 Generating PWM Signals While Changing the Duty
Cycle

The project PWM_GB60 implements the TPM module as PWM generator. The main functions are:
* main — Endlessloop waiting for timer interrupts
e MCU_init — Configures the hardware and the TPM module as PWM generator
* Vgpil isr— Respondsto the “Receive Full” interrupt
* Vtpmlchl isr— Function used to change the PWM’s duty cycle in each interrupt routine service.

MCU _init is afunction generated by deviceinitialization and is located in MCUinit.c also generated by
the device initialization, which was included in the project.

Thisis adescriptive example of the TPM module written for the MC98S08GB60 microcontroller. The
example will toggle an LED with avarying duty cycle modified every TPM period. The configuration
includes the following features:

* PWM period of 524ms (bus clock as source clock, prescaler value of 32, module counter value of
OXFFFF).

* Reset duty cycle value of 0xOF00 (increments a value of 0x1000 on every period)

* PWM isconfigured to be left-aligned, output pin to be controlled by channel 1 and cleared when
channel value is matched.

» Channel interrupt enabled. When serviced, the duty cycle will be incremented a value of 0x1000
on each interrupt request until the max valueis reached (OXFFFF), then theinitial duty cycle value
isrestored.

Thisisaccomplished in the device initialization with thisinitialization code:

TPMIMOD = OxXFFFE; /*Modulo value */

TPM1C1V = 0x0FO00; /*Reset Channel value*/

TPM1C1SC = 0x68; /*Channel interrupt enabled, PWM mode, clears
output on channel value match*/

TPM1SC = 0x0D; /*Overflow interrupt disabled, edge-aligned

Generating PWM Signals Using the HCS08 Timer (TPM)

88 Freescale Semiconductor

In-Depth Reference Material

PWM, bus clock selected as source, prescaler
value of 32*/

This example shows the PWM capabilities by modifying the channel’s duty cycle each time the channel
interrupt is serviced. Theinterrupt handler for channel 1 clears the CH1 flag and modifies the duty cycle
of channel 1.

__interrupt void Vtpmlchl_isr (void)

{

TPM1C1SC_CH1F=0; /* ACK channel interrupt */
/* Read flag, then write a 0 to the bit. */

if (TPM1C1V <= 0xF000) {
TPM1C1lV = TPM1C1lV + 0x1000; /* modifies PWM'’s duty cycle */

} else {

TPM1C1V = 0xF00; /* resets value when max value reached */

}

Thisinterrupt function is automatically generated and initialized in a vector array in MCUinit.c by the
device initialization tool if the option is enabled. The user must define its contents.

3 In-Depth Reference Material

The HCS08 timer module is composed of a 16-bit base counter with one or more channelslinked to it. The
base counter acts as areference, shared among all the linked channels. The channels can be independently
configured, allowing the user to enable the desired functionality for each channel:

» Capture atime stamp of the base timer to the channel value register when an external event occurs
(input capture mode).

* Generate an interrupt or modify an MCU pin value when the base counter reaches a predefined
value on the channel value register (output compare mode).

* Pulse-width modulation (PWM) with duty cycle defined for each channel based on acombination
of the channel value register and the base timer modul o register.

When using the timer to generate PWM signals, the base timer is used to set the PWM period (whichis
common to all channels because this counter is the reference), and each channel can be configured to
handle aPWM signal with its own duty cycle using the channel value register.

The module can generate an interrupt each time the period is matched in the base timer and each time the
duty cycleisreached on any channel. Each channel has its own interrupt vector address so the interrupts
can easily be mapped to a specific handler routine.

The timer alows two PWM operation modes:
* Edge-aligned mode

Generating PWM Signals Using the HCS08 Timer (TPM)

Freescale Semiconductor 89

In-Depth Reference Material

* Center-aligned mode

Edge-aligned PWM operation will count from O to the value stored in the base timer modulo register
(TPMMOD) resetting the counter, changing the output level and setting the overflow flag when thisvalue
is reached. The module will change the output level of each channel again when the base counter equals
the value stored in the respective channel valueregister (TPMCnV), which isan output compare event, as
shown in Figure 1.

The level will be changed according to the settings in the channel status and control register:

» If thelow-true pulses option is selected, the output level will be set to low when the counter resets
and will be set to high when the base counter equals the channel value register.

» If high-true pulsesis selected, the output level will be set to high when the counter resets and will
be set to low when the base counter equals the channel value register.

CWERFLOW CVERFLOW CWVERFLOW

—|=——— PERIOD - |

PULSE
WIDTH *
L Y
TPMxC
] [] []
OUTRUT OUTRUT CUTPUT
COMPARE COMPARE COMPARE

Figure 1. . Edge-Aligned PWM

When thetimer isconfigured for center-aligned PWM operation, thetimer will count from the value stored
in the base timer modulo register (TPMMOD) down to 0 and then up again to the value stored in the base
timer modulo register. This changes the output level of each channel when the counter equals the value
stored in the respective channel value register (TPMCnV), which isthe output compare of the channel, as
shown in Figure 2.

When center-aligned mode is selected all the channels linked to this timer and configured as PWM will
operate in center-aligned mode.

Notice that when using center-aligned mode, using a 0x0000 value is not allowed. A value higher than
Ox7FFF in the modul o register is not recommended because it can generate ambiguous results.

COUNT =0
CUTPUT OUTPUT
COUNT = COMPARE COMPARE COUNT =
TPMMODHTPMM .0t Do) CouNTUP; TPMMODH:TPMM
TPMIC l | | l
‘ PULSEWIDTH __ ‘
2x
| FERICD -

Figure 2. . Centered PWM Operation with (ELSnA = 0)

Generating PWM Signals Using the HCS08 Timer (TPM)

90 Freescale Semiconductor

In-Depth Reference Material

NOTE
This example code was developed using the' CodeWarrior IDE version 5.0
for HCO8, and was tested on the MC9S08QG8 device using device
initialization. Interrupt vectors must be modified to fit the specific MCU
vector table, whichislocated in the vectors and interrupts section of the data
sheet for each MCU.

Generating PWM Signals Using the HCS08 Timer (TPM)

Freescale Semiconductor 91

In-Depth Reference Material

Generating PWM Signals Using the HCS08 Timer (TPM)

92 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Programming and Erasing Flash
Memory on HCS08 Family
Microcontrollers

by: Gonzalo Delgado
RTAC Americas
México 2005

1 Overview

Thisdocument isaquick referencefor programmingand 1 Overview............................... 91
erasi ng theFlash memory included inthe HCS0S Fami |y 2 Code Example and Explanation 92
microcontrollers (MCUs). Basic information about the

functional description and configuration are provided.

The example may be modified to suit the specific needs

for your application — refer to the data sheet for your

device.

Table of Contents

Flash Quick Reference
FCDIV‘ DIVLD: PRDIV8: DIV \

DIVLD — flags writing of the FCDIV register since reset PRDIV8 — selects the input clock divider
DIV[5:0] — selects the divider of the bus rate clock

FOPT‘KEYEN:FNORED: ' ' ' SECH ' SECO‘

KEYEN — enables the backdoor key mechanism
FNORED — enables the vector redirection
SEC[1:0] — determines the security state of the MCU

FCNFG \ ' ' KEYACC ' ' ' ' \

KEYACC — enables the writing of access key

FPROT(| FPS ' FPDIS |

FPS — selects Flash protect size
FPDIS — disables Flash protection

FSTAT \ FCBEF | FCCF ' FPVIOL FACCERR ' FBLANK ! ! |
| | | | | |
FCBEF — flags when the Flash command buffer is full FACCERR — flags access error of the Flash
FCCF — flags the Flash command completed FBLANK — flags erased state of the Flash
FPVIOL — flags protection violation of the Flash
FCMD | FCMD |

FCMD — stores the command to be executed to the Flash

1. FPROT may contain different bits, depending on your device — refer to your data sheet.

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

Because the application code resides in the Flash memory and is executed from there, it is not possible to
program/erase the same block of the Flash that is being read. To program/erase Flash, the code could be
placed in RAM and then executed from there. The example code shows how it is done.

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

In this example, the MCU will program byte from 0 to 127 into the Flash memory and erase them after
their successful execution. Because the Flash memory can’t be programmed whileit isbeing used, an array
that contains the opcode® of the instructions to erase and program will be defined in a specific addressin
RAM memory for their execution. This opcode array can be used to program/erase the Flash memory in
the members of the HCS08 family. Programming/erasing times have to be very precise in order to extend
the life of the Flash and that is why specific and precise instructions are needed. The array of opcode
instructionsin this particular example will only need 59 bytes of the RAM and 4 bytes of the stack.

* Main— Endlessloop for erasing and programming Flash memory address 0x1200.
* MCU_Init — Thisroutine initializes the clock and flash registers.

» Page Erase — Thisroutine erases the page where the address given is located.

* Program_Byte — This routine programs a byte of datato a given address.

Following the next steps, the user will program and erase the Flash memory:

1. Configurethe Flash clock divider and clock registers (using an internal bus clock of 4 MHz, and
setting the Flash clock to be 200 kHz):
(This section was done with the device initialization tool)

2. Declarethe array with the opcode of the Erase and Program instructionsin RAM:

It is very important to know that before the programming/erasing subroutine is called the stack is
being used to store the byte to be programmed in the Accumulator and the address to program in
the HX register. After the subroutine is finished, an error variable is stored in the accumulator (if
it isOxFF, an error occurred)

//Array of opcode instructions of the Erase/Program function

void MCU_init (void)
{
/* ### MC9S08QG8_16 "Cpu" init code ... */
/* PE initialization code after reset */
/* System clock initialization */
/* SOPT1: COPE=0,COPT=1, STOPE=0, BKGDPE=0,RSTPE=0 */
SOPT1 = 0x50;
/* SPMSCl: LVDF=0,LVDACK=0,LVDIE=0,LVDRE=1,LVDSE=1,LVDE=1,BGBE=0 */

ICSCl = 0x04; /* Initialization of the ICS control register 1 */
/* ICSC2: BDIV=1,RANGE=0,HGO=0,LP=0,EREFS=0, ERCLKEN=0, EREFSTEN=0 */
ICSC2 = 0x40; /* Initialization of the ICS control register 2 */

/* Common initialization of the write once registers */

1.0pcode is the numeric value of the assembly instructions, for more information refer to the HCS08 Family Reference Manual.

Programming and Erasing Flash Memory on HCS08 Family Microcontrollers

92 Freescale Semiconductor

Code Example and Explanation

/* SOPT2: COPCLKS=0,IICPS=0,ACIC=0 */

SOPT2 = 0x00;

/* FCDIV: DIVLD=0,PRDIV8=0,DIV5=0,DIV4=1,DIV3=0,DIV2=0,DIV1=1,DIV0=1 */

FCDIV = 0x13;
It is very important to know that before the programming/erasing subroutine is called the stack is
being used to store the byte to be programmed in the Accumulator and the address to program in
the HX register. After the subroutine is finished, an error variable is stored in the accumulator (if
it isOxFF, an error occurred)

//Array of opcode instructions of the Erase/Program function

//Element 0x14 of the array is: (command 0x20 to program a byte, 0x40 to erase a page)
unsigned char FLASH_CMD[] {

0x87,0xC6,0x18, 0x25, 0xA5,0x10, 0x27,0x08, 0xC6, 0x18, 0x25, 0xAA, 0x10, 0xC7,0x18, 0x25,

0x9E, OxE6, 0x01, OxF7, 0xA6, 0x20, 0xC7, 0x18,0x26, 0x45,0x18, 0x25, 0xF6, O0xAA, 0x80, O0xF7,

0x9D, 0x9D, 0x9D, 0x9D, 0x45, 0x18, 0x25, O0xF6, 0xF7, 0xF6, 0xA5, 0x30, 0x27, 0x04, 0xA6, OXFF,
0x20,0x07,0xC6,0x18,0x25, 0xA5,0x40,0x27,0xF9, 0x8A, 0x81};

/* The opcode above represents this set of instructions

if (FSTAT&O0x10) { //Check to see if FACCERR is set
FSTAT = FSTAT | 0x10; //write a 1 to FACCERR to clear

}

(*((volatile unsigned char *) (Address))) = data; //write to somewhere in flash

FCMD = 0x20; //set command type.

FSTAT = FSTAT | 0x80; //Put FCBEF at 1.

_asm NOP; //Wait 4 cycles

_asm NOP;

_asm NOP;

_asm NOP;

if (FSTAT&0x30) { //check to see if FACCERR or FVIOL are set

return OxFF; //if so, error.
}

while ((FSTAT&0x40)==0) { //else wait for command to complete
P*/

3. Disableinterrupts to permit execution of the code

DisableInterrupts;

4. Cyclethat writes a byte form value 0 to 127

for (counter=0;counter<=127;counter++)

Program(0x1200 + counter, counter);

5. Program one byte in the Flash memory

void Program(int Address, unsigned char data) {
unsigned char dummy;

asm jsr FLASH_CMD; //jumps to where the Program Routine is located at
asm sta dummy;
if (dummy == OxFF) {
asm NOP; } //An error occurred during the Programming of the FLASH

}

Programming and Erasing Flash Memory on HCS08 Family Microcontrollers

Freescale Semiconductor 93

Code Example and Explanation

6. Erase a512 byte page starting where the first value was written

void Erase(int Address) {
unsigned char dummy;

FLASH_CMD[21] = 0x40; //Erase command is written into the array
asm jsr FLASH_CMD; //Jjumps to where the Erase Routine is located at
asm sta dummy;
if (dummy == OxXFF){ asm NOP;} //An error occurred during the Erasing of the FLASH
}
NOTE

* This software was developed using the CodeWarrior Development
Studio for HC(S)08 version 5.0 using Device Initialization and was
expressly made for the MC9S08QG8. Changes may be required before
using the code with other MCUs.

* Verify the memory configuration of the RAM and the Flash for the
microcontroller you' reusing. The size of thememory will depend onthe
specific configuration of the MCU. Refer to the data sheet for your
device.

* Theopcode array may be used in members of the HCS08 Family with
no modification at all.

Programming and Erasing Flash Memory on HCS08 Family Microcontrollers

94 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Implementing Interrupt Service Routines

(ISR) in C Using CodeWarrior for the
HCSO08 Family Microcontrollers

by: Laura Delgado

RTAC Americas
México 2005
1 0 . Table of Contents
verVIeW 1T OVerview.o i 95
. 2 Code Example and Explanation............ 96
This document is a quick reference to interruptsin X ’ par
3 In-Depth Reference Material. 98
CodeWarrior CWO08. It provides examples that describe 34 Interrupts 98
how to initialize interrupts and define their service 3.2 Interrupt Vectors 99
I’OUtI nes. The examp|e may be mOdIerd tO S."t the 3.3 Implementatlon 99
specific needs for your application — refer to the data
sheet for your device.
TPM Register Model
Because there is more than one TPM modules on some devices, there are two full sets of registers. In the
register names below, where there’s a small x, there would be a 1 or a 2 in your software to distinguish
the registers that are on TPM1 from those on TPM2. A small n in a register name below is a place-holder
for the channel number.
TPMxSC \ TOF : TOIE :CPWMs: CLKSB \ CLKSA : PS2 : PS1 : PSO \
Interrupt enable and module configuration
TPMxCNTH \ BIT15 : BIT14 : BIT13 : BIT12 \ BIT11 : BIT10 : BIT9 : BIT8 \
TPMxCNTL | BIT7 . BIT6 | BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
Any write to TPMCNTH or TPMCNTL clears the 16-bit counter
TPMXCNTH \ BIT15 : BIT14 : BIT13 : BIT12 \ BIT11 : BIT10 : BIT9 : BIT8 \
TPMXCNTL | BIT7 | BITé , BIT5 | BIT4 | BIT3 | BIT2 | BIT1 | BITO |
Modulo value for TPM module; read or write
TPManSC‘ CHnF: CHnIE : MSnB : MSnA \ ELSnB : ELSnA: : |
Interrupt enable and module configuration
TPMxCnVH \ BIT15 : BIT14 : BIT13 : BIT12 \ BIT11 : BIT10 : BIT9 : BIT8 \
TPMxCnVL \ BIT7 : BIT6 : BIT5 : BIT4 \ BIT3 ' BIT2 : BIT1 : BITO \
Captured TPM counter of input capture function OR output compare value
for output compare of PWM function
© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved. freescaleTM

semiconductor

Code Example and Explanation

2 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

In this application, TPM1 of the MC9S08GB60 microcontroller will be used to generate two kinds of
interrupt requeststo be serviced by two I SRs. Both ISRswill increment avalue of 1to avariable each time
they are serviced.

The functions for project Interrupt.mcp are:

* main— Endlessloop waiting for a Timer interrupt events.

* MCU_init— MCU initialization and timer module initialization (configures and enables the
TPM module and two interrupt sources: timer overflow flag and channel interrupt flags are
enabled).

* VtpmlchO_isr — Interrupt function where the channel flag is cleared and avalue of 1 isadded to
variable VarA and an LED istoggled for visua display.

* Vitpmlovf_isr — Interrupt function where the overflow flag is cleared and avalue of 1 isadded to
variable VarB and an LED istoggled for visual display.

MCU _init is afunction generated by deviceinitialization and is located in MCUinit.c also generated by
the device initialization, which was included in the project.

Thisistheinitialization code for the timer using the MC9S08GB60.

TPM1MOD = Ox7FFF; /* sets the number in which the counter will be reset.*/
TPM1COV = OxOFFF; /* sets the number that, if matched by the counter, will
set the channel flag*/

TPM1COSC = 0x54; /* sets themode for the channel and enables channel flag */

TPM1SC = 0x4D; /*sets timer frequency and enables overflow flag */

After the moduleisinitialized, itsinterrupt sources are enabled and the global interrupt mask is disabled,
whenever atimer interrupt request occurs, the ISR is executed. In this case, we handle two interrupts:
channel and overflow interrupts. Every interrupt is assigned to one interrupt vector each. For example, for
the MC9S08GB60 microcontroller, the vectors that handle these events are vector 8 for the timer 1
overflow flag and vector 6 for the timer 1 channel flag, as shown in Table 1.

Table 1. Timer 1 Channel and Overflow Interrupts Vectors for the MC9S08GB60 Microcontroller

Vector Address .

Number (High/Low) Vector Name Module Source Enable Description
8 $FFEE/FFEF Vipm1ovf TPMA1 TOF TOIE TPM1 overflow
6 $FFF2/FFF3 Vipm1ich1 TPMA1 CH1F CH1IE TPM1 channel 1

After the vector numbers are identified, the interrupt functions can be defined. The interrupt routines
acknowledge the interrupt and add avalue of 1 to avariable

Implementing Interrupt Service Routines (ISR) in C Using CodeWarrior for the HCS08 Family Microcontrollers

96 Freescale Semiconductor

Code Example and Explanation

void interrupt 5 VtpmlchO_isr (void) {

TPM1COSC_CHOF = 0; /* ACK channel interrupt */
/* Reading flag, then write a zero to the bit. */

VarA++;

PTFD_PTFDO = ~PTFD_PTFDO;
}
void interrupt 8 Vtpmlovf_isr (void) {

TPM1SC_TOF = 0; /* ACK timer overflow interrupt */
/* Reading flag, then write a zero to the bit. */

VarB++;

PTFD_PTFD1 = ~PTFD_PTFD1;
}
Figure 1 showsthe code in project interrupts.mcp simulated by the debugger. Five memory displays have
been opened to show the values for VarA, VarB, vector 6, vector 8, and timer registers. Aswell, two
breakpoints where set to |ocate the beginning of the ISRsin the assembly window. The memory locations
for the vectors and timer registers are shown in the data sheet for each device.

Implementing Interrupt Service Routines (ISR) in C Using CodeWarrior for the HCS08 Family Microcontrollers

Freescale Semiconductor 97

) 4

In-Depth Reference Material

i True-Time Simulator & Real-Time Debugger E - C for embedded\. ...
File Wew Run PEDebug Component Daka wWindow Help

ol@(@] s|n(e] 2| +|[e]s]-]

void interrupt =M Lol eNE) S Ph]

(=
TPMLCLSC_CHLF: /¢ The channel
TPMLCLSC_CHLIF = 0 /¢ reading it

Varhd+s:

&}

woid interrupt <M TPMLOvIse (woid)

e TFHLEC_TOF: /74 The timer over
TPMLEC_TOF = 0; A first reading

VarB+;

Vark 1 unsigmed char

For Help, press F1 950B8GBA0 Breskpaint 4

- Variable A and B in address 0100
Interrutp Vectors 8 and 6 pointing to the location of ISRs
ISRs

Timer registers location

Figure 1. CodeWarrior’s True Time Simulator and Real Time Debugger

3 In-Depth Reference Material

The information in this section is provided as reference material for those who would like to learn more
about interrupt functionality in the HCS08 Family of MCUs.

3.1 Interrupts

Exceptions are events that change normal flow of a software program. In the case of Freescale’'s
microcontrollers, these events could be areset instruction or atimeout for the COP watchdog. Interrupts
are one type of exception, in which an exceptional event is responded to with an interrupt service routine
(ISR). Most of Freescale's 8-bit microcontrollers have several sources of interrupts.

Implementing Interrupt Service Routines (ISR) in C Using CodeWarrior for the HCS08 Family Microcontrollers

98 Freescale Semiconductor

In-Depth Reference Material

3.2 Interrupt Vectors

The set of interrupt sources differsin each microcontroller: timers, peripherals, and input pins are the most
common interrupt sources. Vectors are assigned to classify these interrupt sources. Each vector contains
the address where its respective ISR is located in memory. Refer to the Reset and Interrupt Vectors table
in Section 4, “Memory,” in the data sheet for your device.

Vector numbers are given according to priority. As priority decreases, the vector number increases. The
reset instruction is always the highest priority interrupt for all MCUs: it always has the vector number 0
assigned. Not all vector summaries contain the vector numbers, but it can be deduced with the priority
order. If the vector you want to use isthe third highest priority, its vector name will be 2, and so on. When
programming | SRs, having the vector number is essential becauseit isused to identify the interrupt source
referenced.

3.3 Implementation

There are three ways to ways to handle interrupt functions:
» Definition of an interrupt function
» Initialization of avector table
» Placing interrupt function in special memory sections

This document will elaborate only on the definition of an interrupt function. For more information on
alternate procedures to achieve interrupt response, refer to CodeWarrior’s HCO8 Compiler Manual in the
section, “Defining Interrupt Functions.”

There are two main steps to defining an interrupt function:
» Initialization of interrupt source
» Definition of interrupt service routine

During normal operation and if the interrupt mask is disabled, the CPU checksall pending interrupts after
every instruction. If morethan oneinterrupt is pending, the highest priority oneisservicedfirst. Every time
an interrupt request is made, the interrupt mask is set. After the ISR is serviced, the global interrupt mask
iscleared. If the user wantsahigher priority event to interrupt the ISR from alower priority event, the ISR
will have to clear the global interrupt mask.

When a qualified interrupt request is made, the CPU completes the current instruction and performs the
following steps:
1. Savesthe CPU registers (program counter (PC), index register (H:X), accumulator (A), and
condition code register (CCR)) on stack.
Sets interrupt mask to prevent further interrupts to occur during the ISR.
Fetches the interrupt vector for the highest priority.
L oads the program counter with the interrupt vector address.
Processing continues in the ISR.

ok owN

Implementing Interrupt Service Routines (ISR) in C Using CodeWarrior for the HCS08 Family Microcontrollers

Freescale Semiconductor 99

In-Depth Reference Material

3.3.1 Initialization of Interrupt Source

Most interrupt sources are part of amodule (for example, the timer module, SCI module, ADC module,
etc.). Each module has configuration and statusregistersthat select the interrupt-triggering event, and alert
when it occurs. Interrupt sources are generally enabled in these registers. The specific configuration will
depend on the module and microcontroller (refer to the specific data sheet for more information).

Although each module manages the configuration of its own interrupt sources, there isacontrol bit in the
CPU condition code register (bit | in CCR) that disables all interrupts when set. It is called the global
interrupt mask. C doesn’t provide a direct tool to accessing the CPU registers. The CodeWarrior CW08
includes the hidef.h library which contains the instructions that manipulate the global interrupt mask:

» Enablelnterrupts; — clears the global interrupt mask
» Disablelnterrupts, — sets the global interrupt mask

These two instructions, as their names state, enable/disable interrupts. The C compiler also allowsthe use
of assembly instructionswithin the C code: CLI (enableinterrupts), SEI (disableinterrupts). In most 8-bit
microcontrollers, after any reset, the global interrupt mask is set by default. To clear it, the

Enablel nterrupts; instruction must be used. It isagood practiceto keep the global interrupt mask set during
all modulesinitiaization because doing so avoids unwanted interrupt requests while general initialization
isin process. This practice will be applied further in this example.

3.3.2 Definition of ISR (Interrupt Service Routine)

An interrupt function is defined the following way:

void interrupt vector_number function _name (void) {
Flag acknowledgement and
Interrupt Service Routine are included inside this function

}

Theinterrupt functioniswherethe ISR is executed. Theinterrupt function name can be chosen by the user.
The vector number defines what interrupt source will call that particular interrupt function. It is very
important for the user to make sure that the specified vector number matches the wanted interrupt source.
For example, if you are monitoring timer module interrupts, for instance, the overflow event, the vector
number for the vector that handles the overflow event is needed.

Vector number designation can sometimes be tricky, because different microcontrollers often have
different interrupt characteristics: sometimes they handle different vector numbersfor similar events, this
will haveto be taken in consideration when migrating from one device to another. After the vector number
is correctly set and the interrupt function is defined, the program is ready to service the interrupt routine
every time the wanted event is detected.

Generally if an event occursin an enabled interrupt source, an associated flag will become set and the
interrupt function will be called. The ISR should always include the interrupt flag clearing or
acknowledging, otherwise, the corresponding flag will stay set and recalling the | SR becomesimpossible.
Depending on the microcontroller and module, flag acknowledgment is made in different ways (e.g.
reading aregister, writing aacknowledgment bit, writing and reading registers), for moreinformation refer
to the respective data sheet. Some interrupt vectors handle several interrupt sources, therefore several

Implementing Interrupt Service Routines (ISR) in C Using CodeWarrior for the HCS08 Family Microcontrollers

100 Freescale Semiconductor

In-Depth Reference Material

flags. For this case, the ISR will have to check the flag bits to determine which of the sources caused the
interruption.

NOTE

* This software was developed using the CodeWarrior Development
Studio for HC(S)08 version 5.0 and was expressly made for the
MC9S08GB60. Changes may be needed in the code before it can be
used with other MCUs.

» Critical section codes can be protected from unwanted interrupt requests
with aNOP instruction after the interrupt masking instruction.

Implementing Interrupt Service Routines (ISR) in C Using CodeWarrior for the HCS08 Family Microcontrollers
Freescale Semiconductor 101

N

In-Depth Reference Material

Implementing Interrupt Service Routines (ISR) in C Using CodeWarrior for the HCS08 Family Microcontrollers

102 Freescale Semiconductor

Freescale Semiconductor
Users Guide

Memory Mapping for HCS08 Family
MCUs Using CodeWarrior Software

by: Laura Delgado
RTAC Americas
México 2005

1 Overview

This document is a quick reference for customizing
memory map settings using CodeWarrior in the HCS08
Family microcontrollers (MCUSs). Basic information
about the functional description and configuration are
provided. The example may be modified to suit the
specific needs for your application — refer to the data
sheet for your device.

Figure 1 shows a genera memory map. Most 8-bit
microcontrollers contain these memory sections.

1

w N

Table of Contents

DIRECT PAGE REGISTERS

Overview. 103
1.1 Direct-Page Registers 104
12 RAM ... 104
13 Flash 104

Linker and Parameter Files. 104

Implementation. 106
3.1 Defining Memory Areas............... 106
3.2 Referencing Sections in the Source Code. 107
3.3 Alternate Option. 107

Code Example and Explanation 108
41 PRMFile 108
4.2 Data Allocation in Source Code. 109
4.3 Constant Allocation in Source Code 109
4.4 Code Allocation in Source Code 109

0x0000

RAM

FLASH

OXFFFF

Figure 1. General Memory Map

© Freescale Semiconductor, Inc., 2005, 2006. All rights reserved.

freescale"

semiconductor

Linker and Parameter Files

1.1 Direct-Page Registers

Thissection usesdirect addressing mode. Direct instructions are used to access operandsin the direct page,
for example, in the address range 0x0000 to OXO0FF. The high-order byte of the addressis not included in
the instruction, thus saving one byte and one execution cycle compared to extended addressing. Also,
because the bit manipulation instructions support only direct addressing mode, this simplifies management
of control and status bits within the system’s input/output and configuration registers for the MCU, most
of which are in the direct page.

1.2 RAM

RAM iswhere read/write objects® are stored (the stack is placed in this memory area). Depending on the
microcontroller, RAM could have some space in the direct-page area. This allows the user to have bit
addressable variables aswell asthe most used program objects to be handled more efficiently. When using
RAM located in the direct page, the compiler will optimize the code using direct addressing mode (8-bit
address) instead of extended mode (16-bit address). Use this area for most used variables in a program.

1.3 Flash

Flash memory isintended primarily to store program code. Additionally, CodeWarrior saves read-only
objects (e.g., constant variable) in Flash, because they are not meant to be changed. Located in the last
memory locations, interrupt vectors are also contained in the Flash area. Every interrupt vector has a
2-byte register that contains | SR address information.

2 Linker and Parameter Files

CodeWarrior’s software architecture includes several foundation files. These files help characterize the
context in which the MCU isworking: peripheral definitions (*.h), linker parameter files (*.prm), ANSI C
libraries (*.lib), initialization routefiles. For the purpose of thisdocument, wewill elaborate on linker files
(PRM files).

Linking isthe process of assigning memory to all global objects needed for a given application and
combining these objectsinto aformat suitable for downloading into atarget system or an emulator. PRM
files trandate the microcontroller memory map to alinker-readable format. Although the linker takes
almost compl ete control over the placement of objectsin memory, it ispossibleto allocate different groups
of functions, variables or constantsto different memory areas, thisis called segmentation. Inthe PRM file,
segments are set down to establish where you want to allocate certain objects you have defined in your
source code. We will further illustrate this with an example.

PRM file contents may vary according to the MCU specific memory map. Figure 2 shows the memory
map for the MC9S08GB60 microcontroller and the respective linker file. The SEGMENTS section in the
PRM file complies with the memory map.

1. For this document the word object is understood as functions, global data, strings, constants or initialization data.

Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software

104 Freescale Semiconductor

Linker and Parameter Files

:m PRE_FCS_linker.prm

b -} - M- [z~ @'~ Pathe CAFAE -Cfor e WPRE_FCS_linkerpm <

<# Thiz i= a linker paramster file for the GBE&O o
HAMES ENHD ~# Codellarrior will pas=s all the neede

£oooo el
DIRECT PAGE REGISTERS | o SEGHENTS ~* hers all RAM/ROM arsas of the device
£0080 Z_RAM = READ WEITE O0x0080 TO 0xO00FF:
RaM RAM = RFEAD WRITE 0=0100 TOQ 0x107F;
4006 BYTES ROM = READ OHNLY O0Ox182C TO 0xFEFF;
E107F ROMZ = REEAD OHLY Oxl1080 TO 0x17FF:
£1080 SAQOSVECTORS = FEAD OHNLY 0=FFCC TO O0xFFFF; = C
FLASH END
1920 BYTES
$17FF PLACEMENT ~# here all predefined and user segnen
s "/ DEFATLT ROM INTO ROM-%, ROMZ
=y
HIGH FAGE REGISTERS - DEFAULT_RAM INTO R&M:
siaac _DATA FEROPAGE. MY ZEROPAGE INTO 7 _RAH:
SAYECTORS_DATA INTO OSVECTORS:
FLASH END
50348 BYTES . .
EHTRIES % Lesp the following unrefersenced waria
SFFFF < _wectab COszBuildHumber % OSEE *-7
MCAS08GR/GTED END

STACKESIZE 0=50

VECTORE 0 _Startup ~% reset wvector: this 1= the d
SSYECTOR 0 Entry % resst wector: this is the d_ |
S#THIT Entxrvy <% for azsemblv applications:

-

Line 30 Coll | |4] | v[]

Figure 2. Memory Map and Parameter File for MC9S08GB60

Thelinker file for every MCU hasiits default settings for memory assignment. In the case of the
MC9OS08GB60 microcontroller, default ROM space is between 0x182C and OxFEFF, default RAM space
is between 0x0100 and Ox107F, as Figure 2 shows. The rest of the segments won’t be used unless
referenced, as_ DATA_ZEROPAGE, which isthe RAM located in the direct address area. When new
segments are planned to be addressed, they will have to be made in the PRM file and then referenced in
the source code.

Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software

Freescale Semiconductor 105

Implementation

3 Implementation

Planned object allocation has two main prerequisites:
» To have memory areas defined in the PRM file
» To state which objects are to be allocated in which memory areain the source code

3.1 Defining Memory Areas

Thewhole object allocation is performed through the SEGMENTS and PLACEMENT blocksin the PRM
file. The SEGMENTS block iswritten in the following way:

SEGMENTS
Segment definitions;

END

The SEGMENTS block describes the memory map for a certain MCU with alist of al Segment
definitions. Segments are defined in the following way:

Segment_Name = Segment_Qualifier address TO address ;

Because code and data segments are the most used segment types, we are only covering the next segment
qualifiers:

* READ_WRITE —for read/write memory segments (i.e., RAM)
* READ_ONLY - for read-only memory segments (i.e., ROM)
* NO_INIT —for read/write memory that is to remain unchanged at startup.

For more information on segment qualifiers, refer to the smart linker manual. The PLACEMENT block
allows usersto physically place each section from the application in a specific segment. Actually, you can
have many sectionsallocated in onememory segment. The PLACEMENT block iswritteninthefollowing

way:

PLACEMENT
Section placement;

END

Section placement is made in the following way:

Section_Namel INTO Segment_Name ;

In the case of many sections being placed in the same segment:

Section_ Namel, Section_Name2, Section_Name3 INTO Segment_Name ;

For thisinstruction, in Segment_Name, the objectsdefined inthe section Section_Namel arefirst allocated,
then the objects defined in Section_Name2, finally the objects defined in Section_Name3.

In asimilar way, you can place one section in many segments:

Section_Name INTO Segment_Namel, Segment_Name2, Segment_Name3 ;

Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software

106 Freescale Semiconductor

Implementation

For thisinstruction, Section_Name will be allocated first in Segment_Namel. When Segment_ Namel is
full, the allocation will continue in Segment_Name2. Finally when that segment is full, allocation will
continue in Segment_Name3.

NOTE

It isvery important for the user to have the M CU memory map at hand to be
sure not to invade configuration and 1/0 registers, as well as other reserved
memory locations. If new segments are to be created, it's agood practice to
constrain them within the RAM/ROM memory segments boundary.

3.2 Referencing Sections in the Source Code

The CodeWarrior compiler allows attributing a certain segment name to certain global variables or
functions, which then will be allocated into that segment by the linker. As mentioned before, where that
segment actually liesis determined by an entry in the linker parameter file.

In CodeWarrior software, objects are allocated into the default placements unless otherwise stated with a
#pragma directive. Because there are two basic types of segments, code and data segments, there are al'so
two basic pragmas to specify segments:

#pragma CODE_SEG section_name
#pragma DATA_SEG section_name

In addition, there are pragmas for constant data and for strings:

#pragma CONST_SEG section_name
#pragma STRING_SEG section_name

If no segment is specified, the compiler assumestwo default sectionsnamed DEFAULT _ROM (the default
code segment) and DEFAULT_RAM (the default datasegment). If asegment (other than default) has been
already specified and you want to return the segment to the default memory allocation, use the segment
name DEFAULT to explicitly make these default segments the current segments. Thiswill be better
illustrated in the example.

3.3 Alternate Option

There is another way to assign global variables to specific addresses. With the next instruction, variables
can directly be addressed into a specific address number:

#define Var_Name (*(Type *) Address);

CodeWarrior hasthe global variable address modifier @ for the same purpose®. Direct variable allocation
is completed using the following, more simple syntax:

Type Var_Name @ Address;
Where:
* Typeisthetype specifier; for example, int, char.
* Var_Nameistheidentifier of your global varible.
* Addressisthe address where the global variable is to be alocated.

1. The @ modifier is a non-ANSI operator. Take this into consideration when migrating to other compilers.

Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software

Freescale Semiconductor 107

Code Example and Explanation

Sometimesit is useful to have the variable directly alocated in a named segment. To do this, pragma
directivesarefirst stated to make reference of all the sections/segmentsthat are to be used, then any direct
allocation(s) using the * @” modifier can be made, without any particular order:

#pragma DATA_SEG sectionl_name
#pragma DATA_SEG section2_name

Initializer;
Initializer;
Initializer;

Type Varl_Name @ "sectionl_name"
Type Var2 Name @ "section2_name"
Type Var3_Name @ "sectionl_name"

Thiswill beillustrated in the example.

4 Code Example and Explanation

This example code is available inside the CodeWarrior project or from the Freescale Web sitein
HCS08QRUGSW.zip.

In this application, different objects are going to be allocated in memory with different procedures. This
example has been created based on the memory map for the MC9S08GB60 microcontroller.

For this example we will reference two of the filesincluded in the project MemAlloc.mcp: the linker
parameter file (P&E_FCS_linker.prm) and then the source code (main.c) where data, constants, and code
alocation is made.

4.1 PRM File

For this example, new segments (MY_RAM and MY _ROM) were created within both, RAM and ROM.
In order to avoid the new segments unwanted overwriting, default RAM and ROM have been split into two
segments with the help of two other new segments (RAM2 and ROM3). New Default RAM isRAM and
RAMZ2, inasimilar way, new ROM isthe addition of ROM and ROM3. Aswell, already existent segment
for theMC9S08GB60, DATA ZEROPAGE section, was used although it isnot the default dataallocation
section. A new section (MY _CODE) was placed in an already existing segment (ROM2, thisis not the
default ROM). The section placement is here presented, to see the rest of the PRM file, refer to the
CodeWarrior project.

SEGMENTS

7_RAM = READ WRITE 0x0080 TO O0x00FF;
// Default RAM split into RAM and RAM2

RAM = READ_WRITE 0x0100 TO OxO1lFF;
MY_RAM = READ_WRITE 0x0200 TO 0x0202;
RAM2 = READ_WRITE 0x0203 TO 0x107F;

// Default ROM split into ROM AND ROM3

ROM2 = READ_ONLY 0x1080 TO O0x17FF;
ROM = READ_ONLY 0x182C TO OxEFFF;
MY_ROM = READ_ONLY OxF000 TO OxFOFF;
ROM3 = READ_ONLY OxF100 TO OxFEFF;
END
PLACEMENT
DEFAULT_ROM INTO ROM, ROM3;

Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software

108 Freescale Semiconductor

Code Example and Explanation

DEFAULT_RAM INTO RAM, RAM2;
_DATA_ZEROPAGE, MY ZEROPAGE INTO Z_ RAM;
MY_DATA INTO MY_RAM;
MY_CONSTS INTO MY_ROM;
MY_CODE INTO ROM2;

END

4.2 Data Allocation in Source Code

In the source code, MY _DATA section isfirst referenced because it will be used later for direct variable
allocation with the global variable address modifier @. Then, DATA ZEROPAGE is referenced to state
that data will afterwards be located in that section because Var ZeroSeg is located in the zeropage areal.

#pragma DATA SEG MY DATA
#pragma DATA SEG _DATA_ ZEROPAGE

unsigned char VarZeroSeg;

int VarNewSeg@"MY_ DATA";

Data allocation is then restored to the default settings, where VarDefSeg is later allocated.

#pragma DATA_SEG DEFAULT
unsigned char VarDefSeg;

4.3 Constant Allocation in Source Code

For this example, two constant variables are initialized, one allocated in a new section created for this
example, called MY _CONSTS (placed in the new segment MY _ROM), and the other allocated in the
default ROM.

#pragma CONST_SEG MY_CONSTS

const unsigned char ArrayNewSeg[]={0xAA, 0xAA, O0xAA, O0xAA, OxAA};

#pragma CONST_SEG DEFAULT
const int ArrayDefSeg[] = {0xBBBB, O0xBBBB};

CodeWarrior software has many optimization tools. One of them, the constants replacement optimization,
must be disabled. Otherwise, the constant value won't be stored in memory and adirect replacement of its
content will be used. This option can be found in Optimizations, in the compiler option settings. The
compiler options are found in the target settings, in the Edit menu in CodeWarrior.

4.4 Code Allocation in Source Code

For thiskind of allocation, the function prototype and definition will both have to be comprised by the
#pragmadirectives CODE_SEG segment_name. In the example, the prototype iswritten in the following
way

#pragma CODE_SEG MY_CODE

void FunctionNewSec (void) ;
#pragma CODE_SEG DEFAULT

1.For the MC9S08GB60, Z_RAM is a direct addressing mode memory segment.

Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software

Freescale Semiconductor 109

Code Example and Explanation

and the function definition is written like this:
#pragma CODE_SEG MY_CODE
void FunctionNewSec (void) {

VarZeroSeg++;

}

#pragma CODE_SEG DEFAULT

In both, settings for code allocation are set back to default, which is considered to be avery good practice.
FunctionNewSec is placed in ROM2, an already existent segment of Flash memory that is not set as
default.

Figure 3 isan image of the CodeWarrior debugger. Five memory windows have been opened to show the
location of the variables used in this application and a breakpoint was set to point to the address where the
code for FunctionNewSeg was all ocated.

Table 1 summarizes the type and location for every object that was allocated in this example. The
windows, in which each variable' s location is shown in Figure 3, are aso listed.

Table 1.

Var Type Window Section Segment
VarZeroSeg char Memory:1 | _DATA_ZEROPAGE Z_RAM (0x0080 to Ox00FF)
VarNewSeg int Memory:2 |My_DATA MY_RAM (0x0200 — 0x0202)
VarDelSeg char Memory:3 |DEFAULT_RAM RAM (0x0100 — Ox01FF),

RAM2 (0x0203 — 0x107F)
ArrayNewSeg[] |constchar |Memory:4 |MY_CONSTS MY_ROM (0xF000 — 0xFOFF)
ArrayDefSeg[] |const int Memory:5 |DEFAULT_ROM ROM (0x182C — OxEFFF)

ROMS3 (0xF100 — OxFEFF)
FunctionNewSec |void Assembly |MY_CODE ROM2 (0x1080 — 0x17FF)

Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software

110 Freescale Semiconductor

Code Example and Explanation

True-Time Simulator & Real-Time Debugger C:\FAE - C for embedded\l abs¥MemA

File Wiew Run PEDebug Component Data Window Help

||| 2[5[8] 2| == 3]

C:AFAE - C for embeddediLabstMemallochS ourcesimair |Line: 96

#pramma CODE_SEG MY _CODE

woi FunctionNewSec (wvoid) { B
VarZeroSegt;

=)

#pragma CODE_SEG DEFAULT

Data FBEX
main. ¢ Auto Hex Glaobal

VarZerofeqg 0x10 unsigned char

VarNewieqg Oxbbbb int

VarDefieqg Oxaa unsigned char
ArrayNewieqg <5 const array[5] of const unsigned char
ArrayDefieqg <4 const array[2] of const int
_RR3 1> wolatile SR33TR

£ Memory: 4 [:”§||X|] Memory: 5 = |OfX]
ArrayNewSeg0] FOOD - FOOD | 1| lanapDefSeqld] 180F - 129E0 [

FOOO W E “Mispe oo zo Fs 0 . W]
FOO4 EER RN P L] M IFL8ED | no .]

H|Source [£| [0 Assembly

0,0x00,%+3
0,0x00,%+3
0,0x00,%+3
0,0x00,%+3
0,0x00,%+3
0,0x00,%+3
0,0x00,%+3
0,0x00,%+3
0,0x00,%+3
0,0x00,%+3

E et = IC X
VarZeroSeg 80- 80

ooso0 muu ul uu quu]
v

0054 ul uu i uun uuuu o
TiMemory:2 [~ [B]X]
VarewSeg 200 - 201

nzoo mlu uu !uuﬁ

0204 Ul uu i Ul o

X) DiMemory:3 [|B]X]

WVarDefSeg 100-100

oloo Muu ul uu quu]

0104 e we we w0

For Help, press F1 |9505GEE0

[Breakpoint /A

Figure 3. Debugger Window

Thefile P& E_FCS.map located in the project showsamore detail ed description of where sections, vectors,

and objects have been allocated in memory.
NOTE

This software was developed using the CodeWarrior Development Studio
for HC(S)08 version 5.0 and was expressly made for the MC9S08GB60.
Changesto the code may berequired beforeit can be used with other MCUs.

Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software

Freescale Semiconductor

111

Code Example and Explanation

Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software

112 Freescale Semiconductor

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080

support.asia @freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

HCS08QRUG
Rev. 1, 2/2006

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical’ parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005, 2006. All rights reserved.

: £

Z " freescaler

semiconductor

	HCS08 Peripheral Module Quick Reference
	1 Overview
	2 Device Initialization Main Menu (Integrated into CW Main Menu)
	3 Target CPU Window
	4 Inspector Dialog Window
	5 Error Window
	6 Description of Generated Files
	7 Example Code and Explanation

	Using the Device Initialization for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Low Voltage Detect System for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Internal Clock Source (ICS) for the HCS08 Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Internal Clock Generator (ICG) for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Programming the Low-Power Modes on HCS08 Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the External Interrupt Request Function (IRQ) for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Keyboard Interrupt (KBI) for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Analog Comparator (ACMP) for the HCS08 Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the 10-Bit Analog-to-Digital Converter (ADC) for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Analog-to-Digital Converter (ATD) for the HCS08 Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Inter-Integrated Circuit (IIC) Module on the HCS08 Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Serial Communications Interface (SCI) for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Serial Peripheral Interface (SPI) for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the 8-Bit Modulo Timer (MTIM) for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Real-Time Interrupt (RTI) Function for HCS08 the Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Using the Input Capture and Output Compare Functions for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Generating PWM Signals Using the HCS08 Timer (TPM)
	1 Overview
	2 Code Example and Explanation

	Programming and Erasing Flash Memory on HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Implementing Interrupt Service Routines (ISR) in C Using CodeWarrior for the HCS08 Family Microcontrollers
	1 Overview
	2 Code Example and Explanation

	Memory Mapping for HCS08 Family MCUs Using CodeWarrior Software
	Overview
	Code Example and Explanation

