

Radiation Hardened Dual 4-Input NAND Gate

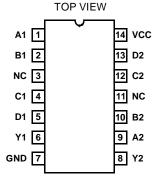
September 1995

Features

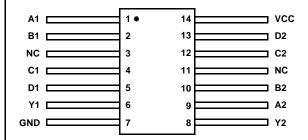
- 3 Micron Radiation Hardened SOS CMOS
- Total Dose 200K RAD (Si)
- SEP Effective LET No Upsets: >100 MEV-cm²/mq
- Single Event Upset (SEU) Immunity < 2 x 10⁻⁹ Errors/Bit-Day
- Dose Rate Survivability: >1 x 10¹² RAD (Si)/s
- Dose Rate Upset >10¹⁰ RAD (Si)/s 20ns Pulse
- · Latch-Up Free Under Any Conditions
- Military Temperature Range: -55°C to +125°C
- Significant Power Reduction Compared to LSTTL ICs
- DC Operating Voltage Range: 4.5V to 5.5V
- LSTTL Input Compatibility
 - VIL = 0.8V Max
 - VIH = VCC/2 Min
- Input Current Levels Ii ≤ 5μA at VOL, VOH

Description

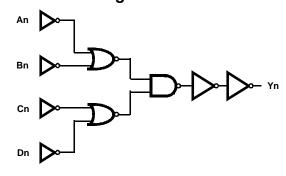
The Intersil HCTS20MS is a Radiation Hardened Dual 4-Input NAND Gate. A low on any input forces the output to a High state. The HCTS20MS utilizes advanced CMOS/SOS technology to achieve high-speed operation. This device is a member of radiation hardened, high-speed, CMOS/SOS Logic Family.


The HCTS20MS is supplied in a 14 lead Ceramic flatpack (K suffix) or a SBDIP Package (D suffix).

Ordering Information


PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
HCTS20DMSR	-55°C to +125°C	Intersil Class S Equivalent	14 Lead SBDIP
HCTS20KMSR	-55°C to +125°C	Intersil Class S Equivalent	14 Lead Ceramic Flatpack
HCTS20D/ Sample	+25°C	Sample	14 Lead SBDIP
HCTS20K/ Sample	+25°C	Sample	14 Lead Ceramic Flatpack
HCTS20HMSR	+25°C	Die	Die

Pinouts


14 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE (SBDIP) MIL-STD-183S CDIP2-T14

14 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE (FLATPACK) MIL-STD-183S CDFP3-F14 **TOP VIEW**

Functional Diagram

TRUTH TABLE

	INP	OUTPUTS		
An	Bn	Cn	Dn	Yn
L	X	X	Х	Н
Х	L	Х	Х	Н
Х	Х	L	Х	Н
Х	Х	Х	L	Н
Н	Н	Н	Н	L

NOTE: L = Logic Level Low, H = Logic level High, X = Don't Care

Absolute Maximum Ratings

Supply Voltage (VCC) -0.5V to +7.0V Input Voltage Range, All Inputs -0.5V to VCC +0.5V DC Drain Current, Any One Output.....±25mA

(All Voltage Reference to the VSS Terminal)

Storage Temperature Range (TSTG). -65 $^{\rm o}$ C to +150 $^{\rm o}$ C Lead Temperature (Soldering 10sec). +265°C Junction Temperature (TJ) +175°C

Reliability Information

Thermal Resistance	θ_{JA}	$\theta_{\sf JC}$
SBDIP Package	74°C/W	24°C/W
Ceramic Flatpack Package	116°C/W	30°C/W
Maximum Package Power Dissipation at +12	5°C Ambien	t
SBDIP Package		0.68W
Ceramic Flatpack Package		0.43W
If device power exceeds package dissipat	ion capabilit	ty, provide
heat sinking or derate linearly at the following	rate:	
SBDIP Package	1	3.5mW/°C

Ceramic Flatpack Package 8.6mW/°C CAUTION: As with all semiconductors, stress listed under "Absolute Maximum Ratings" may be applied to devices (one at a time) without resulting in permanent damage. This is a stress rating only. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. The conditions listed

Operating Conditions

Supply Voltage (VCC)	-4.5V to +5.5V
Input Rise and Fall Times at 4.5V VCC (TR, TF)	. 100ns/V Max
Operating Temperature Range (T _A)55	5°C to +125°C

under "Electrical Performance Characteristics" are the only conditions recommended for satisfactory device operation..

Input High Voltage (VIH)......VCC/2 to VCC

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTE 1)	GROUP A SUB-		LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	GROUPS	TEMPERATURE	MIN	MAX	UNITS
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	10	μΑ
		VIIN = VCC OI GIND	2, 3	+125°C, -55°C	-	200	μΑ
Output Current (Sink)	IOL	VCC = 4.5V, VIH = 4.5V, VOUT = 0.4V, VIL = 0V	1	+25°C	4.8	-	mA
(SIIIK)		VOOT = 0.4V, VIL = 0V	2, 3	+125°C, -55°C	4.0	-	mA
Output Current (Source)	ЮН	VCC = 4.5V, VIH = 4.5V, VOUT = VCC -0.4V,	1	+25°C	-4.8	-	mA
(Source)		VIL = 0V	2, 3	+125°C, -55°C	-4.0	-	mA
Output Voltage Low	VOL	VCC = 4.5V, VIH = 2.25V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
		VCC = 5.5V, VIH = 2.75V, IOL = 50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	-	0.1	V
Output Voltage High	VOH	VCC = 4.5V, VIH = 2.25V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
		VCC = 5.5V, VIH = 2.75V, IOH = -50μA, VIL = 0.8V	1, 2, 3	+25°C, +125°C, -55°C	VCC -0.1	-	V
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	1	+25°C	-	±0.5	μΑ
Current		GIND	2, 3	+125°C, -55°C	-	±5.0	μΑ
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.80V (Note 2)	7, 8A, 8B	+25°C, +125°C, -55°C	-	-	-

NOTES:

- 1. All voltages reference to device GND.
- 2. For functional tests VO ≥ 4.0V is recognized as a logic "1", and VO ≤ 0.5V is recognized as a logic "0".

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTEC 4. 2)	GROUP		LIMITS		
PARAMETER	SYMBOL	(NOTES 1, 2) CONDITIONS	A SUB- GROUPS	TEMPERATURE	MIN	MAX	UNITS
Input to Output	TPHL	VCC = 4.5V	9	+25°C	2	18	ns
			10, 11	+125°C, -55°C	2	20	ns
	TPLH	VCC = 4.5V	9	+25°C	2	20	ns
			10, 11	+125°C, -55°C	2	22	ns

NOTES:

- 1. All voltages referenced to device GND.
- 2. AC measurements assume RL = 500Ω , CL = 50pF, Input TR = TF = 3ns, VIL = GND, VIH = 3V.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Capacitance Power	CPD	VCC = 5.0V, f = 1MHz	1	+25°C	-	60	pF
Dissipation			1	+125°C, -55°C	-	120	pF
Input Capacitance	CIN	VCC = 5.0V, f = 1MHz	1	+25°C	-	10	pF
			1	+125°C, -55°C	-	10	pF
Output Transition	TTHL	VCC = 4.5V	1	+25°C	-	15	ns
Time	TTLH		1	+125°C, -55°C	=	22	ns

NOTE:

TABLE 4. DC POST RADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

		(NOTES 1, 2)		200K RAD LIMITS			
PARAMETER	SYMBOL	CONDITIONS	TEMPERATURE	MIN	MAX	UNITS	
Quiescent Current	ICC	VCC = 5.5V, VIN = VCC or GND	+25°C	_	0.2	mA	
Output Current (Sink)	IOL	VCC = 4.5V, VIN = VCC or GND, VOUT = 0.4V	+25°C	4.0	-	mA	
Output Current (Source)	IOH	VCC = 4.5V, VIN = VCC or GND, VOUT = VCC -0.4V	+25°C	-4.0	-	mA	
Output Voltage Low	VOL	VCC = 4.5V and 5.5V, VIH = VCC/2V, VIL = 0.80V RAD, IOL = 50μA	+25°C	-	0.1	V	
Output Voltage High	VOH	VCC = 4.5V and 5.5V, VIH = VCC/2V, VIL = 0.8V , IOH = -50μA	+25°C	VCC -0.1	-	V	
Input Leakage Current	IIN	VCC = 5.5V, VIN = VCC or GND	+25°C	-	±5	μΑ	
Noise Immunity Functional Test	FN	VCC = 4.5V, VIH = 2.25V, VIL = 0.8V, (Note 3)	+25°C	-	-	V	
Input to Output	TPHL	VCC = 4.5V	+25°C	2	20	ns	
	TPLH	VCC = 4.5V	+25°C	2	22	ns	

NOTES:

- 1. All voltages referenced to device GND.
- 2. AC measurements assume RL = 500Ω , CL = 50pF, Input tr = tf = 3ns, VIL = GND, VIH = 3V.
- 3. For functional tests VO ≥ 4.0V is recognized as a logic "1", and VO ≤ 0.5V is recognized as a logic "0".

^{1.} The parameters listed in Table 3 are controlled via design or process parameters. Min and Max Limits are guaranteed but not directly tested. These parameters are characterized upon initial design release and upon design changes which affect these characteristics.

TABLE 5. BURN-IN AND OPERATING LIFE TEST, DELTA PARAMETERS (+25°C)

PARAMETER	GROUP B SUBGROUP	DELTA LIMIT	
ICC	5	ЗμΑ	
IOL/IOH	5	-15% of 0 Hour	

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUPS		METHOD	GROUP A SUBGROUPS	READ AND RECORD	
Initial Test (Preburn-In)		100%/5004	1, 7, 9	ICC, IOL/H	
Interim Test I (Postburn-I	n)	100%/5004	1, 7, 9	ICC, IOL/H	
Interim Test II (Postburn-	·ln)	100%/5004	1, 7, 9	ICC, IOL/H	
PDA		100%/5004	1, 7, 9, Deltas		
Interim Test III (Postburn	Interim Test III (Postburn-In)		1, 7, 9	ICC, IOL/H	
PDA		100%/5004	1, 7, 9, Deltas		
Final Test		100%/5004	2, 3, 8A, 8B, 10, 11		
Group A (Note 1)		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11		
Group B Subgroup B-5		Sample/5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11	
Subgroup B-6		Sample/5005	1, 7, 9		
Group D		Sample/5005	1, 7, 9		

NOTE:

TABLE 7. TOTAL DOSE IRRADIATION

CONFORMANCE		TEST		READ AND	RECORD
GROUPS	METHOD	PRE RAD POST RAD		PRE RAD	POST RAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4 (Note 1)

NOTE:

1. Except FN test which will be performed 100% Go/No-Go.

^{1.} Alternate group A inspection in accordance with Method 5005 of MIL-STD-883 may be exercised.

TABLE 8. STATIC AND DYNAMIC BURN-IN TEST CONNECTIONS

				OSCILI	LATOR		
OPEN	GROUND	1/2 VCC = 3V ± 0.5V	$\text{VCC} = 6\text{V} \pm 0.5\text{V}$	50kHz	25kHz		
STATIC BURN-IN I TEST CONNECTIONS (Note 1)							
3, 6, 8, 11	1, 2, 4, 5, 7, 9, 10, 12, 13	-	14	-	-		
STATIC BURN	-IN II TEST CONNECTIONS (Note	e 1)					
3, 6, 8, 11	7	-	1, 2, 4, 5, 9, 10, 12, 13, 14	-	-		
DYNAMIC BURN-IN TEST CONNECTIONS (Note 2)							
-	7	3, 6, 8, 11	14	1, 2, 4, 5, 9, 10, 12, 13	-		

NOTES:

- 1. Each pin except VCC and GND will have a resistor of 10K $\!\Omega\pm5\%$ for static burn-in
- 2. Each pin except VCC and GND will have a resistor of 1K $\!\Omega\pm5\%$ for dynamic burn-in

TABLE 9. IRRADIATION TEST CONNECTIONS

OPEN	GROUND	$\text{VCC} = 5\text{V} \pm 0.5\text{V}$
3, 6, 8, 11	7	1, 2, 4, 5, 9, 10, 12, 13, 14

NOTE: Each pin except VCC and GND will have a resistor of 47K Ω \pm 5% for irradiation testing. Group E, Subgroup 2, sample size is 4 dice/wafer 0 failures.

Intersil Space Level Product Flow - 'MS'

Wafer Lot Acceptance (All Lots) Method 5007 (Includes SEM)

GAMMA Radiation Verification (Each Wafer) Method 1019, 4 Samples/Wafer, 0 Rejects

100% Nondestructive Bond Pull, Method 2023

Sample - Wire Bond Pull Monitor, Method 2011

Sample - Die Shear Monitor, Method 2019 or 2027

100% Internal Visual Inspection, Method 2010, Condition A

100% Temperature Cycle, Method 1010, Condition C, 10 Cycles

100% Constant Acceleration, Method 2001, Condition per Method 5004

100% PIND, Method 2020, Condition A

100% External Visual

100% Serialization

100% Initial Electrical Test (T0)

100% Static Burn-In 1, Condition A or B, 24 hrs. min., +125°C min., Method 1015

100% Interim Electrical Test 1 (T1)

100% Delta Calculation (T0-T1)

100% Static Burn-In 2, Condition A or B, 24 hrs. min., +125°C min., Method 1015

100% Interim Electrical Test 2 (T2)

100% Delta Calculation (T0-T2)

100% PDA 1, Method 5004 (Notes 1and 2)

100% Dynamic Burn-In, Condition D, 240 hrs., +125°C or Equivalent, Method 1015

100% Interim Electrical Test 3 (T3)

100% Delta Calculation (T0-T3)

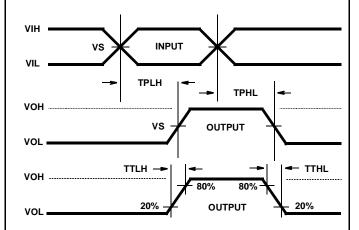
100% PDA 2, Method 5004 (Note 2)

100% Final Electrical Test

100% Fine/Gross Leak, Method 1014

100% Radiographic, Method 2012 (Note 3)

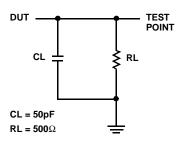
100% External Visual, Method 2009


Sample - Group A, Method 5005 (Note 4)

100% Data Package Generation (Note 5)

NOTES:

- 1. Failures from Interim electrical test 1 and 2 are combined for determining PDA 1.
- 2. Failures from subgroup 1, 7, 9 and deltas are used for calculating PDA. The maximum allowable PDA = 5% with no more than 3% of the failures from subgroup 7.
- 3. Radiographic (X-Ray) inspection may be performed at any point after serialization as allowed by Method 5004.
- 4. Alternate Group A testing may be performed as allowed by MIL-STD-883, Method 5005.
- 5. Data Package Contents:
 - Cover Sheet (Intersil Name and/or Logo, P.O. Number, Customer Part Number, Lot Date Code, Intersil Part Number, Lot Number, Quantity).
 - · Wafer Lot Acceptance Report (Method 5007). Includes reproductions of SEM photos with percent of step coverage.
 - GAMMA Radiation Report. Contains Cover page, disposition, Rad Dose, Lot Number, Test Package used, Specification Numbers, Test equipment, etc. Radiation Read and Record data on file at Intersil.
 - X-Ray report and film. Includes penetrometer measurements.
 - · Screening, Electrical, and Group A attributes (Screening attributes begin after package seal).
 - Lot Serial Number Sheet (Good units serial number and lot number).
 - Variables Data (All Delta operations). Data is identified by serial number. Data header includes lot number and date of test.
 - The Certificate of Conformance is a part of the shipping invoice and is not part of the Data Book. The Certificate of Conformance is signed by an authorized Quality Representative.


AC Timing Diagrams

AC VOLTAGE LEVELS

PARAMETER	нстѕ	UNITS
VCC	4.50	V
VIH	3.00	V
VS	1.30	V
VIL	0	V
GND	0	V

AC Load Circuit

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time withou notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Die Characteristics

DIE DIMENSIONS:

2.20 x 2.24(mm)

METALLIZATION:

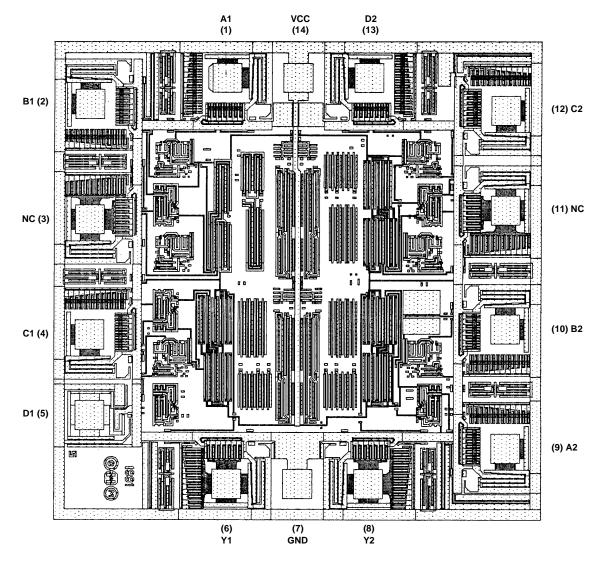
Type: SiAI

Metal Thickness: 11kÅ ± 1kÅ

GLASSIVATION:

Type: SiO_2 Thickness: $13k\mathring{A} \pm 2.6k\mathring{A}$

WORST CASE CURRENT DENSITY:


 $< 2.0 \times 10^5 \text{A/cm}^2$

BOND PAD SIZE:

100μm x 100μm 4 mils x 4 mils

Metallization Mask Layout

HCTS20MS

NOTE: The die diagram is a generic plot from a similar HCS device. It is intended to indicate approximate die size and bond pad location. The mask series for the HCTS20 is TA14426A.