
1

File Number 3961.3

HS-RTX2010RH

Radiation Hardened Real Time Express™
Microcontroller
The HS-RTX2010RH is a radiation-hardened 16-bit
microcontroller with on-chip timers, an interrupt controller, a
multiply-accumulator, and a barrel shifter. It is particularly
well suited for space craft environments where very high
speed control tasks which require arithmetically intensive
calculations, including floating point math to be performed in
hostile space radiation environments.

This processor incorporates two 256-word stacks with
multitasking capabilities, including configurable stack
partitioning and over/underflow control.

Instruction execution times of one or two machine cycles are
achieved by utilizing a stack oriented, multiple bus
architecture. The high performance ASIC Bus, which is
unique to the RTX product, provides for extension of the
microcontroller architecture using off-chip hardware and
application specific I/O devices.

RTX Microcontrollers support the C and Forth programming
languages. The advantages of this product are further
enhanced through third party hardware and software support.

Combined, these features make the HS-RTX2010RH an
extremely powerful processor serving numerous
applications in high performance space systems. The
HS-RTX2010RH has been designed for harsh space
radiation environments and features outstanding Single
Event Upset (SEU) resistance and excellent total dose
response.

Specifications for Rad Hard QML devices are controlled
by the Defense Supply Center in Columbus (DSCC). The
SMD numbers listed here must be used when ordering.

Detailed Electrical Specifications for these devices are
contained in SMD 5962-95635. A “hot-link” is provided
on our homepage for downloading.
www.intersil.com/spacedefense/space.asp

Features

• Electrically Screened to SMD # 5962-95635

• QML Qualified per MIL-PRF-38535 Requirements

• Fast 125ns Machine Cycle

• 1.2µM TSOS4 CMOS/SOS Process

• Total Dose Capability 300KRad(Si)

• Single Event Upset Critical LET >120MeV/mg/cm2

• Single Event Upset Error Rate <1 x 10-10 Errors/Bit-Day
(Note)

• -55oC - 125oC, 5V ±10% Operation

• Single Cycle Instruction Execution

• Fast Arithmetic Operations
- Single Cycle 16-Bit Multiply
- Single Cycle 16-Bit Multiply Accumulate
- Single Cycle 32-Bit Barrel Shift
- Hardware Floating Point Support

• C Software Development Environment

• Direct Execution of Fourth Language

• Single Cycle Subroutine Call/Return

• Four Cycle Interrupt Latency

• On-Chip Interrupt Controller

• Three On-Chip 16-Bit Timer/Counters

• Two On-Chip 256 Word Stacks

• ASIC Bus™ for Off-Chip Architecture Extension

• 1 Megabyte Total Address Space

• Word and Byte Memory Access

• Fully Static Design - DC to 8MHz Operation

• 84 Lead Quad Flat Package or 85 Pin Grid Array

• Third Party Software and Hardware Development Systems

NOTE: Single Event Upset error rates are Adams 10% worst case
environment under worst case conditions for upset.

Applications

• Space Systems Embedded Control

• Digital Filtering

• Image Processing

• Scientific Instrumentation

• Optical Systems

• Control Systems

• Attitude/Orbital Control

Ordering Information

ORDERING NUMBER
INTERNAL

MKT. NUMBER
TEMP. RANGE

(oC)

5962F9563501QXC HS8-RTX2010RH-8 55 to 125

5962F9563501QYC HS9-RTX2010RH-8 55 to 125

5962F9563501V9A HS0-RTX2010RH-Q 25

5962F9563501VXC HS8-RTX2010RH-Q 55 to 125

5962F9563501VYC HS9-RTX2010RH-Q 55 to 125

HS8-RTX2010RH/Proto HS8-RTX2010RH/Proto 55 to 125

HS9-RTX2010RH/Proto HS9-RTX2010RH/Proto 55 to 125

Data Sheet March 2000

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000

Real Time Express™, RTX™, and ASIC Bus™ are trademarks of Intersil Corporation.

2

Block Diagram

HS-RTX2010RH

INPUTS

CONTROL CLOCK AND
CONFIGURATION

CONTROL

MAIN
MEMORY

OFF CHIP
PERIPHERALS

INTERRUPT

INPUTS
INTERRUPT

CONTROL

TIMER

INPUTS

ASIC BUS

INTERFACE

MEMORY BUS

INTERFACE

PROCESSOR
RTX CORE STACK

CONTROLLERS

BARREL

SHIFTER

MAC

RETURN
STACK

256-WORD

PARAMETER
STACK

256-WORD

MEMORY
PAGE

CONTROL

TIMER/
COUNTERS

Pinouts
HS8-RTX2010RH

MIL-STD-1835 CMGA3-P85C

NOTE: An overbar on a signal name represents an active LOW signal.

BA C D E F G H J K L

GA00

MD14

MD12

MD11

MD08

INTA

TCLK

E I5 GD15

MD05

GND

GND

MD04

MD03

MD02

GD07

MD00

NEW

MD01

VDD

LDS

UDS

GND

MA18

GND

MA04

MA08

GD05

MA10

MA13

MA15

MA17

MA19

MA05

MA07

GD04

MA09

MA12

VDD

MA14

MA16

MA06

MA11

GNDGD09

BOOT

PCLK

GD01 MA01

GA01

VDD

MD06

GA02

ICLK

MD15

MD13

MD10

MD09

MD07

NMI

GND

A B C D E F G H J K L

VDD MA02 MA03E I1

E I2 GD14 GD11 GD10E I4

E I3 WAIT GD13 GD12 GD06 GD03 GD02 GD00GD08

INT-
SUP

1

10

11

4

3

7

8

9

5

6

2 RESET

PIN
A1

GR/W

GIO

MR/W

HS-RTX2010RH

TOP VIEW

PINS DOWN

8

9

10

11

2

3

4

5

1

7

6

CJKL H G F E D B A

CJKL H G F E D B A

PIN
A1

BOTTOM VIEW

PINS UP

GA00

MD14

MD12

MD11

MD08

TCLK

GD15

MD05

GND

GD13

GD14

GND

MD04

MD03

MD02

GD12

GD11

GD07

MD00

NEW

MD01

GD06

VDD

LDS

GND

MA18

GND

GD03

MA04

MA08

GD05

MA10

MA13

MA17

MA19

GD02

GD01

MA02

MA05

MA07

GD04

MA16

GD08

GD10

GD09

BOOT

GA01

VDD

MD06

GA02

MD15

MD13

MD10

MD09

MD07

E I4

E I1

GND

ICLK

UDS PCLK

MA15

INTSUP NMI

WAIT RESET E I3

E I2

VDD

INTA

E I5

MA09

MA12

MA14

GD00

MA01

MA03

MA06

MA11

GND

VDD MR/W

GR/W

GIO

ALIGN.
PIN

HS-RTX2010RH

3

HS9-RTX2010RH
(LEAD LENGTH NOT TO SCALE) SEE INTERSIL OUTLINE R84.A

Pinouts (Continued)

NOTE: An overbar on a signal name represents an active LOW signal.

HS-RTX2010RH

TOP VIEW

65
66
67
68
69
70
71
72
73
74

54
55
56
57
58
59
60
61
62

64
63

MD02
MD03
MD04
GND
MD05
MD06
MD07
VDD
MD08

MA17
MA18
MA19
GND
LDS
UDS
NEW
BOOT
PCLK

MD00
MD01

75767778798081828384
123456789

1011

25
26
27
28
29
30
31
32

12
13
14

18
19
20
21
22
23
24

15
16
17

5352515033 49484746454443424140393837363534
E

I5

M
D

09
M

D
10

M
D

11
M

D
12

M
D

13
M

D
14

G
N

D
M

D
15

G
A

00
G

A
01

G
A

02
T

C
L

K
IN

TA
N

M
I

IN
T

S
U

P
V

D
D

E
I1

E
I2

E
I3

E
I4

M
A

04
M

A
03

M
A

02
M

A
01

G
D

00
G

D
01

G
D

02

M
A

16
M

A
15

M
A

14

M
A

13
V

D
D

M
A

12
M

A
11

M
A

10
M

A
09

G
N

D
M

A
08

M
A

07
M

A
06

M
A

05

RESET
WAIT
ICLK

GD14
GD13
GND

GD12
GD11
GD10
GD09
GD08
GD07
VDD

GD06
GD05
GD04
GD03
GND

GD15

GR/W
GIO

MR/W

PGA And CQFP
Pin/Signal Assignments

CQFP
PGA
PIN

SIGNAL
NAME TYPE

1 C6 GA02 Output; Address Bus

2 A6 TCLK Output

3 A5 INTA Output

4 B5 NMI Input

5 C5 INTSUP Input

6 A4 VDD Power

7 B4 EI1 Input

8 A3 EI2 Input

9 A2 EI3 Input

10 B3 EI4 Input

11 A1 EI5 Input

12 B2 RESET Input

13 C2 WAIT Input

14 B1 ICLK Input

15 C1 GR/W Output

16 D2 GIO Output

17 D1 GD15 I/O; Data Bus

18 E3 GD14 I/O; Data Bus

19 E2 GD13 I/O; Data Bus

20 E1 GND Ground

21 F2 GD12 I/O; Data Bus

22 F3 GD11 I/O; Data Bus

23 G3 GD10 I/O; Data Bus

24 G1 GD09 I/O; Data Bus

25 G2 GD08 I/O; Data Bus

26 F1 GD07 I/O; Data Bus

27 H1 VDD Power

28 H2 GD06 I/O; Data Bus

29 J1 GD05 I/O; Data Bus

30 K1 GD04 I/O; Data Bus

31 J2 GD03 I/O; Data Bus

32 L1 GND Ground

33 K2 GD02 I/O; Data Bus

34 K3 GD01 I/O; Data Bus

35 L2 GD00 I/O; Data Bus

36 L3 MA01 Output; Address Bus

37 K4 MA02 Output; Address Bus

38 L4 MA03 Output; Address Bus

39 J5 MA04 Output; Address Bus

40 K5 MA05 Output; Address Bus

41 L5 MA06 Output; Address Bus

42 K6 MA07 Output; Address Bus

43 J6 MA08 Output; Address Bus

44 J7 GND Ground

45 L7 MA09 Output; Address Bus

46 K7 MA10 Output; Address Bus

PGA And CQFP
Pin/Signal Assignments (Continued)

CQFP
PGA
PIN

SIGNAL
NAME TYPE

HS-RTX2010RH

4

47 L6 MA11 Output; Address Bus

48 L8 MA12 Output; Address Bus

49 K8 MA13 Output; Address Bus

50 L9 VDD Power

51 L10 MA14 Output; Address Bus

52 K9 MA15 Output; Address Bus

53 L11 MA16 Output; Address Bus

54 K10 MA17 Output; Address Bus

55 J10 MA18 Output; Address Bus

56 K11 MA19 Output; Address Bus

57 J11 GND Ground

58 H10 LDS Output

59 H11 UDS Output

60 F10 NEW Output

61 G10 BOOT Output

62 G11 PCLK Output

63 G9 MR/W Output

64 F9 MD00 I/O; Data Bus

65 F11 MD01 I/O; Data Bus

PGA And CQFP
Pin/Signal Assignments (Continued)

CQFP
PGA
PIN

SIGNAL
NAME TYPE

66 E11 MD02 I/O; Data Bus

67 E10 MD03 I/O; Data Bus

68 E9 MD04 I/O; Data Bus

69 D11 GND Ground

70 D10 MD05 I/O; Data Bus

71 C11 MD06 I/O; Data Bus

72 B11 MD07 I/O; Data Bus

73 C10 VDD Power

74 A11 MD08 I/O; Data Bus

75 B10 MD09 I/O; Data Bus

76 B9 MD10 I/O; Data Bus

77 A10 MD11 I/O; Data Bus

78 A9 MD12 I/O; Data Bus

79 B8 MD13 I/O; Data Bus

80 A8 MD14 I/O; Data Bus

81 B6 GND Ground

82 B7 MD15 I/O; Data Bus

83 A7 GA00 Output; Address Bus

84 C7 GA01 Output; Address Bus

- C3 - Isolated Alignment Pin

PGA And CQFP
Pin/Signal Assignments (Continued)

CQFP
PGA
PIN

SIGNAL
NAME TYPE

Output Signal Descriptions

SIGNAL CQFP
RESET
LEVEL DESCRIPTION

OUTPUTS

NEW 60 1 NEW: A HIGH on this pin indicates that an Instruction Fetch is in progress.

BOOT 61 1 BOOT: A HIGH on this pin indicates that Boot Memory is being accessed. This pin can be set or reset by accessing
bit 3 of the Configuration Register.

MR/W 63 1 MEMORY READ/WRITE: A LOW on this pin indicates that a Memory Write operation is in progress.

UDS 59 1 UPPER DATA SELECT: A HIGH on this pin indicates that the high byte of memory (MD15-MD08) is being
accessed.

LDS 58 1 LOWER DATA SELECT: A HIGH on this pin indicates that the low byte of memory (MD07-MD00) is being
accessed.

GIO 16 1 ASIC I/O: A LOW on this pin indicates that an ASIC Bus operation is in progress.

GR/W 15 1 ASIC READ/WRITE: A LOW on this pin indicates that an ASIC Bus Write operation is in progress.

PCLK 62 0 PROCESSOR CLOCK: Runs at half the frequency of ICLK. All processor cycles begin on the rising edge of PCLK.
Held low extra cycles when WAIT is asserted.

TCLK 2 0 TIMING CLOCK: Same frequency and phase as PCLK but continues running during Wait cycles.

INTA 3 0 INTERRUPT ACKNOWLEDGE: A HIGH on this pin indicates that an Interrupt Acknowledge cycle is in progress.

Input Signal, Bus, and Power Connection Descriptions

SIGNAL
CQFP
LEAD DESCRIPTION

INPUTS

WAIT 13 WAIT: A HIGH on this pin causes PCLK to be held LOW and the current cycle to be extended.

ICLK 14 INPUT CLOCK: Internally divided by 2 to generate all on-chip timing (CMOS input levels).

RESET 12 A HIGH level on this pin resets the RTX. Must be held high for at least 4 rising edges of ICLK plus 12 ICLK cycle
setup and hold times.

HS-RTX2010RH

5

EI2, EI1 8, 7 EXTERNAL INTERRUPTS 2, 1: Active HIGH level-sensitive inputs to the Interrupt Controller. Sampled on the rising
edge of PCLK. See Timing Diagrams for detail.

EI5-EI3 11-9 EXTERNAL INTERRUPTS 5, 4, 3: Dual purpose inputs; active HIGH level-sensitive Interrupt Controller inputs;
active HIGH edge-sensitive Timer/Counter inputs. As interrupt inputs, they are sampled on the rising edge of PCLK.
See Timing Diagrams for detail.

NMI 4 NON-MASKABLE INTERRUPT: Active HIGH edge-sensitive Interrupt Controller input capable of interrupting any
processor cycle when NMI is set to Mode 0. See the Interrupt Suppression and Interrupt Controller Sections.

INTSUP 5 INTERRUPT SUPPRESS: A HIGH on this pin inhibits all maskable interrupts, internal and external.

ADDRESS BUSES (OUTPUTS)

GA02 1 ASIC ADDRESS: 3-bit ASIC Address Bus, which carries address information for external ASIC devices.

GA01 84

GA00 83

MA19-MA14 56-51 MEMORY ADDRESS: 19-bit Memory Address Bus, which carries address information for Main Memory.

MA13-MA09 49-45

MA08-MA01 43-36

DATA BUSES (I/O)

GD15-GD13 17-19 ASIC DATA: 16-bit bidirectional external ASIC Data Bus, which carries data to and from off-chip I/O devices.

GD12-GD07 21-26

GD06-GD03 28-31

GD02-GD00 33-35

MD15 82 MEMORY DATA: 16-bit bidirectional Memory Data Bus, which carries data to and from Main Memory.

MD14-MD08 80-74

MD07-MD05 72-70

MD04-MD00 68-64

POWER CONNECTIONS

VDD 6, 27,
50, 73

Power supply +5V connections. A 0.1µF, low impedance decoupling capacitor should be placed between VDD and
GND. This should be located as close to the RTX package as possible.

GND 20, 32,
44, 57,
69, 81

Power supply ground return connections.

Input Signal, Bus, and Power Connection Descriptions (Continued)

SIGNAL
CQFP
LEAD DESCRIPTION

FIGURE 1. AC DRIVE AND MEASURE POINTS - CLK INPUT

4.0V

0.5V

4.0V

0.5V

tPULSE WIDTH

tHOLDtSETUP

2.25V

tVALID tHOLD

tDELAY

2.25V

TYPICAL
CLOCK OR

STROBE

TYPICAL
INPUT

TYPICAL
OUTPUT

TYPICAL
DATA

OUTPUT

2.25V2.25V

2.75V
1.75V

2.75V
1.75V

2.25V2.25V2.25V

tDELAY

tPULSE WIDTH

HS-RTX2010RH

6

Timing Diagrams

NOTES:

1. NORMAL CYCLE: This waveform describes a normal PCLK cycle and a PCLK cycle with a Wait state.

2. EXTENDED CYCLE: This waveform describes a PCLK cycle for a USER memory access or an external ASIC Bus read cycle when the CYCEXT
bit or ARCE bit is set.

3. EXTENDED CYCLE: This waveform describes a GIO cycle for an external ASIC Bus read when the ARCE bit is set.

4. An active HIGH signal on the RESET input is guaranteed to reset the processor if its duration is greater than or equal to 4 rising edges of ICLK
plus 1/2 ICLK cycle setup and hold times. If the RESET input is active for less than four rising edges of ICLK, the processor will not reset.

FIGURE 2. CLOCK AND WAIT TIMING

FIGURE 3. TIMER/COUNTER TIMING

t3

ICLK

TCLK

WAIT

PCLK
(NOTE 2)

PCLK
(NOTE 1)

GIO
(NOTE 3)

t2

t1

t19

t13 t12

t5
t4

t11

t5t20t15

t20

t17 t16

t51 t50

t4

t7 t8

t6

EI5 - EI3

HS-RTX2010RH

7

NOTES:

5. If both LDS and UDS are low, no memory access is taking place in the current cycle. This only occurs during streamed instructions that do not
access memory.

6. During a streamed single cycle instruction, the Memory Data Bus is driven by the processor.

FIGURE 4. MEMORY BUS TIMING

NOTES:

7. GIO remains high for internal ASIC bus cycles.

8. GR/W goes low and GD is driven for all ASIC write cycles, including internal ones.

9. During non-ASIC write cycles, GD is not driven by the HS-RTX2010RH. Therefore, it is recommended that all GD pins be pulled to VCC or GND
to minimize power supply current and noise.

10. t40B and t41B specifications are for Streamed Mode of operation only.

FIGURE 5. ASIC BUS TIMING

Timing Diagrams (Continued)

t26 t28

t31

t35

t29

t32

t34 t33

PCLK

MA

MD
IN

MD
OUT

LDS
UDS
NEW

BOOT
MR/W t21

t22

t48

t50 t51

t49

t52

t56

t54

t58

t42

t43t40A, B
t41A, B

t62

t61 t63

t65

GA

PCLK

ICLK

GIO

GR/W

GD
IN

GD
OUT

t69

HS-RTX2010RH

8

NOTES:

11. Events in an interrupt sequence are as follows:

e1. The Interrupt Controller samples the interrupt request inputs on the rising edge of PCLK. If NMI rises between e1 and the rising edge of
PCLK prior to e5, the interrupt vector will be for NMI.

e2. If any interrupt requests were sampled, the Interrupt Controller issues an interrupt request to the core on the falling edge of PCLK.

e3. The core samples the state of the interrupt requests from the Interrupt Controller on the falling edge of PCLK. If INTSUP is high, maskable
interrupts will not be detected at this time.

e4. When the core samples an interrupt request on the falling edge of PCLK, an Interrupt Acknowledge cycle will begin on the next rising edge
of PCLK.

e5. Following the detection of an interrupt request by the core, an Interrupt Acknowledge cycle begins. The interrupt vector will be based on the
highest priority interrupt request active at this time.

12. t44 is only required to determine when the Interrupt Acknowledge cycle will occur.

13. Interrupt requests should be held active until the Interrupt Acknowledge cycle for that interrupt occurs.

FIGURE 6. INTERRUPT TIMING: WITH INTERRUPT SUPPRESSION

FIGURE 7. INTERRUPT TIMING: WITH NO INTERRUPT SUPPRESSION

Timing Diagrams (Continued)

MA

INTA

INTSUP

PCLK

e1 e2 e3 e4 e5

t44

t46 t47 t46 t47

t67 t68

t28t26

EI

INT VECTOR

e1 e2 e4 e5

t44

t46 t47

t67 t68

t26 t28

MA

INTA

INTSUP

PCLK

E I

INT VECTOR

HS-RTX2010RH

9

HS-RTX2010RH Microcontroller
The HS-RTX2010RH is designed around the RTX Processor
core, which is part of the Intersil Standard Cell Library.

This processor core has eight 16-bit internal registers, an
ALU, internal data buses, and control hardware to perform
instruction decoding and sequencing.

On-chip peripherals which the HS-RTX2010RH includes are
Memory Page Controller, an Interrupt Controller, three
Timer/Counters, and two Stack Controllers. Also included
are a Multiplier-Accumulator (MAC), a Barrel Shifter, and a
Leading Zero Detector for floating point support.

Off-chip user interfaces provide address and data access to
Main Memory and ASIC I/O devices, user defined interrupt
signals, and Clock/Reset controls.

Figure 9 shows the data paths between the core, on-chip
peripherals, and off-chip interfaces.

The HS-RTX2010RH microcontroller is based on a two-stack
architecture. These two stacks, which are Last-In-First-Out
(LIFO) memories, are called the Parameter Stack and the
Return Stack.

Two internal registers, and , provide the top
two elements of the 16-bit wide Parameter Stack, while the

remaining elements are contained in on-chip memory (“stack
memory”).

The top element of the Return Stack is 21 bits wide, and is
stored in registers and , while the remaining
elements are contained in stack memory.

The highly parallel architecture of the RTX is optimized for
minimal Subroutine Call/Return overhead. As a result, a
Subroutine Call takes one Cycle, while a Subroutine Return
is usually incorporated into the preceding instruction and
does not add any processor cycles. This parallelism
provides for peak execution rates during simultaneous bus
operations which can reach the equivalent of 32 million
Forth language operations per second at a clock rate of
8MHz. Typical execution rates exceed 8 million operations
per second.

Intersil factory applications support for this device is limited.
RTS-C C-Compiler support is provided by Highland Software
at highlandsoft@compuserve.com. Development system
tools are supported by Micro Processor Engineering Limited
(UK) at 441 703 631441. A HS-RTX2010RH programmers
reference manual can be obtained through your local Intersil
Sales Office.

NOTES:

14. Events in an interrupt sequence are as follows:

e1. The Interrupt Controller samples the interrupt request inputs on the rising edge of PCLK. If NMI rises between e1 and the rising edge of
PCLK prior to e5, the interrupt vector will be for NMI.

e2. If any interrupt requests were sampled, the Interrupt Controller issues an interrupt request to the core on the falling edge of PCLK.

e4. When the core samples an interrupt request on the falling edge of PCLK, an Interrupt Acknowledge cycle will begin on the next rising edge
of PCLK.

e5. Following the detection of an interrupt request by the core, an Interrupt Acknowledge cycle begins. The interrupt vector will be based on the
highest priority interrupt request active at this time.

15. t44 is only required to determine when the Interrupt Acknowledge cycle will occur.

16. Interrupt requests should be held active until the Interrupt Acknowledge cycle for that interrupt occurs.

17. NMI has a glitch filter which requires the signal that initiates NMI last at least two rising and two falling edges of ICLK.

FIGURE 8. NON-MASKABLE INTERRUPT TIMING

Timing Diagrams (Continued)

t44

e1 e2 e4 e5

PCLK

NMI

MA

INTA

NMI
VECTOR

t67 t68

t26 t28

TOP NEXT

I IPR

HS-RTX2010RH

10

HS-RTX2010RH Operation
Control of all data paths and the Program Counter Register,
(), is provided by the Instruction Decoder. This hardware
determines what function is to be performed by looking at
the contents of the Instruction Register, (), and
subsequently determines the sequence of operations
through data path control.

Instructions which do not perform memory accesses execute
in a single clock cycle while the next instruction is being
fetched.

As shown in Figure 10, the instruction is latched into at
the beginning of a clock cycle. The instruction is then decoded
by the processor. All necessary internal operations are
performed simultaneously with fetching the next instruction.

Instructions which access memory require two clock cycles
to be executed. During the first cycle of a memory access
instruction, the instruction is decoded, the address of the
memory location to be accessed is placed on the Memory
Address Bus (MA19-MA01), and the memory data
(MD15-MD00), is read or written. During the second cycle,
ALU operations are performed, the address of the next
instruction to be executed is placed on the Memory Address
Bus, and the next instruction is fetched, as indicated in the
bottom half of Figure 10.

BYTE
SWAP

HS-RTX2010RH

OFF-CHIP
USER
INTERFACES

TIMER/COUNTERS

TP0
TP1
TP2

TC0
TC1
TC2

ALU
Y T

PCI TOPCR MD SR

CONTROL
STACK

IMR
IVR
IBC

CONTROL
INTERRUPT(N

O
T

E
)

CONTROL
PAGE

MEMORY

CLOCK AND
CONTROLRESETINTERFACE

MEMORY BUS
INTERFACE
ASIC BUS

DPR
IPR

UPR
CPR
UBR

SPR

SUR
SVR

E
I5

-E
I3

E
I2

-E
I1

IN
TA

N
M

I
IN

T
S

U
P

IC
L

K
W

A
IT

P
C

L
K

T
C

L
K

R
E

S
E

T

U
D

S
L

D
S

N
E

W
B

O
O

T
M

R
/W

M
A

19
-

M
A

01

M
D

15
-

M
D

00

G
R

/W

G
IO

G
A

2-
G

A
0

G
D

15
-

G
D

00

-1 +1

INSTRUCTION
DECODER

IR

LEADING ZERO
DETECTOR

BARREL
SHIFTER

16 x 16
MAC

MXR

MHR

MLR

256 x 21
RETURN

MEMORY
STACK

256 x 16
PARAMETER

MEMORY
STACK

NEXT

NOTE: contains the 5 most significant bits (20-16) of the top element of the Return Stack.

FIGURE 9. HS-RTX2010RH FUNCTIONAL BLOCK DIAGRAM
IPR

PC

IR

IR

HS-RTX2010RH

11

RTX Data Buses and Address Buses
The RTX core bus architecture provides for unidirectional
data paths and simultaneous operation of some data buses.
This parallelism allows for maximum efficiency of data flow
internal to the core.

Addresses for accessing external (off-chip) memory or
ASIC devices are output via either the Memory Data Bus
(MA19-MA01) or the ASIC Address Bus (GA02-GA00). See
Table 3. External data is transferred by the ASIC Data Bus
(GD15-GD00) and the Memory Data Bus (MD15-MD00),
both of which are bidirectional.

RTX Internal Registers
The core of the HS-RTX2010RH is a macrocell available
through the Intersil Standard Cell Library. This core contains
eight 16-bit internal registers, which may be accessed
implicitly or explicitly, depending upon the register accessed
and the function being performed.

: The Top Register contains the top element of the
Parameter Stack++. is the implicit data source or
destination for certain instructions, and has no ASIC address
assignment. The contents of this register may be directed to
any I/O device or to any processor register except the
Instruction Register. is also the T input to the ALU.
Input to must come through the ALU. This register

also holds the most significant 16 bits of 32-bit products and
32-bit dividends.

: The Next Register holds the second element of the
Parameter Stack. is the implicit data source or
destination for certain instructions, and has no ASIC address
assignment. During a stack “push”, the contents of
are transferred to stack memory, and the contents of
are put into . This register is used to hold the least
significant 16 bits of 32-bit products. Memory data is
accessed through , as described in the Memory
Access section of this document.

: The Instruction Register is actually a latch which
contains the instruction currently being executed, and has no
ASIC address assignment. In certain instructions, an
operand can be embedded in the instruction code, making

 the implicit source for that operand (as in the case of
short literals). Input to this register comes from Main
Memory (see Tables 6 thru 22 for code information).

: The Configuration Register is used to indicate and
control the current status/setup of the RTX microcontroller,
through the bit assignments shown in Figure 11. This
register is accessed explicitly through read and write
operations, which cause interrupts to be suppressed for one
cycle, guaranteeing that the next instruction will be
performed before an Interrupt Acknowledge cycle is allowed
to be performed.

CYCLE
CLOCK
SECOND
BEGIN

CONCURRENT
OPERATIONS

EXECUTION SEQUENCE WITH NO MEMORY DATA ACCESS:

EXECUTION SEQUENCE WITH MEMORY DATA ACCESS:

CYCLE
CLOCK

FIRST
END OF

FETCH

D
E

C
O

D
E

D
E

C
O

D
E

OPERATIONS
CONCURRENT

PCLK

MEMORY DATA
READ OR WRITE

PERFORM INTERNAL OPERATIONS AND
ALU OPERATIONS, AS REQUIRED

CYCLE
CLOCK

FIRST
END OF

CYCLE
CLOCK
SECOND
BEGIN

CYCLE
CLOCK
FIRST
BEGIN

ASIC BUS OPERATIONS

SECOND
CLOCK
CYCLE

END OF

CYCLE
CLOCK
FIRST
BEGIN

ADDRESS OF
MEMORY

LOCATION
IS PLACED ONTO

MA19-MA01
BUS

PLACE ADDRESS OF
NEXT INSTRUCTION
ONTO MA19-MA01

FETCH NEXT
INSTRUCTION

PERFORM ALU OPERATIONS

INSTRUCTION
LATCHES INTO

ADDRESS OF
NEXT

INSTRUCTION
IS PLACED ONTO

MA19-MA01
BUS

INSTRUCTION
LATCHES

IR

INTO

IR

FIGURE 10. INSTRUCTION EXECUTION SEQUENCE

TOP
TOP

TOP
TOP

NEXT
EXT

NEXT
TOP

NEXT

NEXT

IR

IR

CR

HS-RTX2010RH

12

: The Program Counter Register contains the address
of the next instruction to be fetched from Main Memory. At
RESET, the contents of are set to 0.

: The Index Register contains 16 bits of the 21-bit top
element of the Return Stack, and is also used to hold the
count for streamed and loop instructions (see Figure 19). In
addition, can be used to hold data and can be written
from . The contents of may be accessed in
either the push/pop mode in which values are moved to/from
stack memory as required, or in the read/write mode in
which the stack memory is not affected. The ASIC address
used for determines what type of operation will be
performed (see Table 5). When the Streamed Instruction
Mode (see RTX Programmer’s Reference Manual) is used, a
count is written to and the next instruction is executed
that number of times plus one (i.e., count + 1).

: The Multi-Step Divide Register holds the divisor
during Step Divide operations, while the 32-bit dividend is in

 and . may also be used as a general
purpose scratch pad register.

: The Square Root Register holds the intermediate
values used during Step Square Root calculations.
may also be used as a general purpose scratch pad register.

On-Chip Peripheral Registers
The HS-RTX2010RH has an on-chip Interrupt Controller, a
Memory Page Controller, two Stack Controllers, three
Timer/Counters, a Multiplier-Accumulator, a Barrel Shifter,
and a Leading Zero Detector. Each of these peripherals
utilizes on-chip registers to perform its functions.

Timer/Counter Registers
, , : The Timer/Counter Registers are

16-bit read-only registers which contain the current count
value for each of the three Timer/Counters. The counter is
decremented at each rising clock edge of TCLK. Reading
from these registers at any time does not disturb their
contents. The sequence of Timer/Counter operations is
shown in Figure 23 in the Timer/Counters section.

, , : The Timer Preload Registers are
write-only registers which contain the initial 16-bit count
values which are written to each timer. After a timer counts
down to zero, the preload register for that timer reloads its
initial count value to that timer register at the next rising clock
edge, synchronously with TCLK. Writing to these registers
causes the count to be loaded into the corresponding Timer/
Counter register on the following cycle.

Multiplier-Accumulator (MAC) Registers:
: The Multiplier High Product Register holds the most

significant 16 bits of the 32-bit product generated by the RTX
Multiplier. If the register’s ROUND bit is set, this
register contains the rounded 16-bit output of the multiplier.
In the Accumulator context, this register holds the middle 16
bits of the MAC.

: The Multiplier Lower Product Register holds the least
significant 16 bits of the 32-bit product generated by the RTX
Multiplier. It is also the register which holds the least
significant 16 bits of the MAC Accumulator.

: The MAC Extension Register holds the most significant
16 bits of the MAC Accumulator. When using the Barrel Shifter,
this register holds the shift count. When using the Leading Zero
Detector, the leading zero count is stored in this register.

Interrupt Controller Registers
: The Interrupt Vector Register is a read-only register

which holds the current Interrupt Vector value. See Figure 12
and Table 4.

: The Interrupt Base/Control Register is used to store
the Interrupt Vector base address and to specify
configuration information for the processor, as indicated by
the bit assignments in Figure 13.

R/W; CARRY
R/W; COMPLEX CARRY

SET INTERRUPT DISABLE;
0 = INT. ENABLED;
1 = INT. DISABLED

WRITE - ONLY (READS AS 0);

R/W; BYTE ORDER BIT

0 = ADDRESSING MODE 0
1 = ADDRESSING MODE 1
RESETS TO 0. MODES:

RESERVED (NOTE)

R/W; BOOT
DRIVES OUTPUT SIGNAL
TO SELECT BOOT ROM;

INTERRUPT LATCH
READ ONLY;
DISABLE STATUS
READ ONLY; INTERRUPT

ARCE; ASIC READ CYCLE EXTEND
WHEN SET EXTENDS CYCLE ON

NMI MODE
1 = RETURN FROM NMI POSSIBLE
0 = NO RETURN FROM NMI

RESERVED (NOTE)

EXTERNAL ASIC READS

(RTX 2000 MODE)

CR

5678 0123491 1 11 115 4 3 2 1 0

NOTE: Always read as ‘‘0’’. Should be set = 0 during Write operations.

FIGURE 11. BIT ASSIGNMENTSCR

PC

PC

I

I
TOP I

I

I

MD

TOP EXT MD

SR
SR

TC0 TC1 TC2

TP0 TP1 TP2

MHR

IBC

MLR

MXR

IVR

ALL ZEROS

VECTOR ADDRESS
(SEE TABLE 1)

0123456711 891012131415 IVR

BIT 10

BIT 11

BIT 12

BIT 15

BIT 14

BIT 13

IBC

IBC

IBC

IBC

IBC

IBC

MA15-MA00

IBC

FIGURE 12. BIT ASSIGNMENTSIVR

IBC

HS-RTX2010RH

13

: The Interrupt Mask Register has a bit assigned for
each maskable interrupt which can occur. When a bit is set,
the interrupt corresponding to that bit will be masked. Only
the Non-Maskable Interrupt (NMI) cannot be masked. See
Figure 14 for bit assignments for this register.

Stack Controller Registers
: The Stack Pointer Register holds the stack pointer

value for each stack. Bits 0-7 represent the next available
stack memory location for the Parameter Stack, while bits 8-
15 represent the next available stack memory location for the
Return Stack. These stack pointer values must be accessed
together, as . See Figure 15.

: The Stack Overflow Limit Register is a write-only
register which holds the overflow limit values (0 to 255) for
the Parameter Stack (bits 0-7) and the Return Stack (bits
8-15). These values must be written together. See Figure 16.

: The Stack Underflow Limit Register holds the
underflow limit values for the Parameter Stack and the
Return Stack. In addition, this register is utilized to define the
use of substacks for both stacks. These values must be
accessed together. See Figure 17.

01234567891514 1213 10

READ-ONLY; FATAL
STACK ERROR FLAG

READ-ONLY; PARAMETER
STACK UNDERFLOW FLAG

READ-ONLY; PARAMETER
STACK OVERFLOW FLAG

READ-ONLY; RETURN
STACK UNDERFLOW FLAG

READ-ONLY; RETURN
STACK OVERFLOW FLAG

SVR

IBC

PARAMETER STACK

RETURN STACK FATAL ERROR

DPRSEL: SELECTS

= 1: SELECT

= 0: SELECT

PAGE REGISTER FOR
DATA MEMORY ACCESS

SUR

CPR

DPR

ROUND: MULTIPLIER
CONTROL BIT; SELECTS
ROUNDING OF 16 x 16
BIT MULTIPLICATION
= 1: ROUNDED 16-BIT

PRODUCT
= 0: UNROUNDED

32-BIT PRODUCT

INPUT SIGNALS: TCLK
OR EI5 - EI3 (TABLE 6)

SELECT TIMER/COUNTER

CYCEXT: ALLOWS
EXTENDED CYCLE LENGTH
FOR USER MEMORY
INSTRUCTION CYCLES; SEE
CLOCK AND WAIT
TIMING DIAGRAMS

M
A

14
M

A
15

M
A

12
M

A
13

M
A

10
M

A
11

IN
T

E
R

R
U

P
T

 V
E

C
TO

R

IN
T

E
R

R
U

P
T

 S
E

C
T

IO
N

)
B

A
S

E
 (

S
E

E
 T

H
E

11

FATAL ERROR

FIGURE 13. BIT ASSIGNMENTSIBC

IMR

RSV, RETURN STACK
OVERFLOW

PSV, PARAMETER STACK
OVERFLOW

RSU, RETURN STACK
UNDERFLOW

PSU, PARAMETER STACK
UNDERFLOW

EI1
(EXTERNAL INPUT PIN)

EI2
TCI 0
TCI 1
TCI 2
EI3
EI4
EI5
SWI

IMR
1514 1213 891011 01234567

RESERVED (NOTE)

RESERVED (NOTE)

NOTE: Always read as ‘‘0’’. Should be set = 0 during Write operations.

FIGURE 14. BIT ASSIGNMENTSIMR

SPR

SPR

SVR

SUR

89

PSP, PARAMETER STACK
POINTER

RSP, RETURN STACK
POINTER

01234567

SPR

101115 141312

FIGURE 15. BIT ASSIGNMENTSSPR

PVL: PARAMETER
STACK OVERFLOW LIMIT.

RVL: RETURN STACK
OVERFLOW LIMIT.

SVR

01234567891415 1312 1110

NUMBER OF WORDS FROM
TOP OF CURRENT SUBSTACK

NUMBER OF WORDS FROM
TOP OF CURRENT SUBSTACK

FIGURE 16. BIT ASSIGNMENTSSVR

HS-RTX2010RH

14

Memory Page Controller Registers
: The Code Page Register contains the value for the

current 32K-word Code page. See Figure 18 for bit field
assignments.

: The Index Page Register extends the Index Register
() by 5 bits; i.e., when a Subroutine Return is performed,
the contains the Code page from which the subroutine
was called, and comprises the 5 most significant bits of the
top element of the Return Stack. See Figure 19. During
nonsubroutine operation, writing to causes the current
Code page value to be written to . Reading or writing
directly to does not push the Return Stack.

: The Data Page Register contains the value for the
current 32K-word Data page. See Figure 20 for bit field
assignments.

: The User Page Register contains the value for the
current User page. See Figure 21 for bit field assignments.

: The User Base Address Register contains the base
address for User Memory Instructions. See Figure 21 for bit
field assignments.

0123456789

PSF: PARAMETER STACK
START FLAG

PSU: PARAMETER

0 - 31 WORDS FROM
BOTTOM OF SUBSTACK

STACK UNDERFLOW LIMIT

RSF: RETURN STACK
START FLAG

RSU: RETURN STACK

0 - 31 WORDS FROM
BOTTOM OF SUBSTACK

UNDERFLOW LIMIT

RETURN SUBSTACK BITS:
= 00: EIGHT 32 WORD STACKS
= 01: FOUR 64 WORD STACKS

SUR

15 14 1312 1110

PARAMETER SUBSTACK BITS:
= 00: EIGHT 32 WORD STACKS
= 01: FOUR 64 WORD STACKS
= 10: TWO 128 WORD STACKS
= 11: ONE 256 WORD STACK

= 10: TWO 128 WORD STACKS
= 11: ONE 256 WORD STACK

FIGURE 17. BIT ASSIGNMENTSSUR

CPR

0123456711 891012131415

CPR

MA16
MA17
MA18
MA19

RESERVED
(NOTE)

NOTE: Always read as ‘‘0’’. Should be set = 0 during Write operations.

FIGURE 18. BIT ASSIGNMENTSCPR

IPR
I

IPR

I
IPR

IPR

DPR

UPR

UBR

BIT ASSIGNMENTS DURING NON-SUBROUTINE OPERATIONS

IIPR

9 012345678

BIT ASSIGNMENTS DURING SUBROUTINE OPERATIONS

DEFINES RETURN ADDRESS

TYPE OF RETURN
= 1: INTERRUPT RETURNS:
= 0: SUBROUTINE RETURNS:

STORED DURING INTERRUPT
WHERE DPRSEL BIT IS

OR SUBROUTINE CALL

IIPR

9 012345678

USED FOR TEMPORARY
STORAGE OF VARIABLES,
LOOP COUNTS, AND
STREAM COUNTS

CURRENT CODE
PAGE VALUE

02 91 81 71 61 51 41 31 21 11 01

02 91 81 71 61 51 41 31 21 11 01

FIGURE 19. AND BIT ASSIGNMENTSI IPR

0123456711 891012131415

DPR

MA16
MA17
MA18
MA19

RESERVED
(NOTE)

NOTE: Always read as ‘‘0’’. Should be set = 0 during Write operations.

FIGURE 20. BIT ASSIGNMENTSDPR

0123456711 891012131415

USER PAGE
REGISTER

UBR

MA15 - MA06

0123456711 891012131415

I R

0123456711 891012131415

UPR

MA19
MA18
MA17
MA16

NOT USED TO GENERATE
THIS ADDRESS

INSTRUCTION
REGISTER

R
E

S
E

R
V

E
D

USER BASE

REGISTER
ADDRESS

RESERVED

MA05

MA04

MA03

MA02

MA01

(NOTE)

(N
O

T
E

)

NOTE: Always read as ‘‘0’’. Should be set = 0 during Write operations.

FIGURE 21. AND BIT ASSIGNMENTSUPR UBR

HS-RTX2010RH

15

Initialization of Registers
Initialization of the on-chip registers occurs when a HIGH
level on the RTX RESET pin is held for a period of greater
than or equal to four rising edges of ICLK plus 1/2 ICLK
cycle setup and hold times. While the RESET input is HIGH,
the TCLK and PCLK clock outputs are held reset in the LOW
state.

Table 1 shows initialization values and ASIC addresses for
the on-chip registers. As indicated, both the and the

 are cleared and execution begins at page 0, word 0
when the processor is reset.

The RESET has a Schmitt trigger input, which allows the
use of a simple RC network for generation of a power-on
RESET signal. This helps to minimize the circuit board
space required for the RESET circuit.

To ensure reliable operation even in noisy embedded control
environments, the RESET input is filtered to prevent a reset
caused by a glitch of less than four ICLK cycles duration.PC

CPR

TABLE 1. REGISTER INITIALIZATION AND ASIC ADDRESS ASSIGNMENTS

REGISTER
HEX

ADDR
INITIALIZED
CONTENTS DESCRIPTION/COMMENTS

0000 0000 0000 0000 Top Register

1111 1111 1111 1111 Next Register

0000 0000 0000 0000 Instruction Register

00H 01H
02H

1111 1111 1111 1111 Index Register

03H 0100 0000 0000 1000 Configuration Register: Boot = 1; Interrupts Disabled; Byte Order = 0.

04H 1111 1111 1111 1111 Multi-Step Divide Register

06H 0000 0010 0000 0000 Square Root Register

07H 0000 0000 0000 0000 Program Counter Register

08H 0000 0000 0000 0000 Interrupt Mask Register

09H 0000 0000 0000 0000 Stack Pointer Register: The beginning address for each stack is set to a value of ‘0’.

0AH 0000 0111 0000 0111 Stack Underflow Limit Register

0BH 0000 0010 0000 0000 Interrupt Vector Register: Read only; this register holds the current Interrupt Vector
value, and is initialized to the “No Interrupt” value.

0BH 1111 1111 1111 1111 Stack Overflow Limit Register: Write-only; Each stack limit is set to its maximum value.

0CH 0000 0000 0000 0000 Index Page Register

0DH 0000 0000 0000 0000 Data Page Register: The Data Address Page is set for page ‘0’.

0EH 0000 0000 0000 0000 User Page Register: The User Address Page is set for page ‘0’.

0FH 0000 0000 0000 0000 Code Page Register: The Code Address Page is set for page ‘0’.

10H 0000 0000 0000 0000 Interrupt Base/Control Register

11H 0000 0000 0000 0000 User Base Address Register: The User base address is set to ‘0’ within the User page.

12H 0000 0000 0000 0000 MAC Extension Register

/ 13H 0000 0000 0000 0000 Timer/Counter Register 0: Set to time out after 65536 clock periods or events.

/ 14H 0000 0000 0000 0000 Timer/Counter Register 1: Set to time out after 65536 clock periods or events.

/ 15H 0000 0000 0000 0000 Timer/Counter Register 2: Set to time out after 65536 clock periods or events.

16H 0000 0000 0000 0000 Multiplier Lower Product Register

17H 0000 0000 0000 0000 Multiplier High Product Register

TOP

NEXT

IR

I

CR

MD

SR

PC

IMR

SPR

SUR

IVR

SVR

IPR

DPR

UPR

CPR

IBC

UBR

MXR

TC0 TP0

TC1 TP1

TC2 TP2

MLR

MHR

HS-RTX2010RH

16

Dual Stack Architecture
The HS-RTX2010RH features a dual stack architecture. The
two 256-word stacks are the Parameter Stack and the
Return Stack, both of which may be accessed in parallel by a
single instruction, and which minimize overhead in passing
parameters between subroutines. The functional structure of
each of these stacks is shown in Figure 22.

The Parameter Stack is used for temporary storage of data
and for passing parameters between subroutines. The top two
elements of this stack are contained in the and
registers of the processor, and the remainder of this stack is
located in stack memory. The stack memory assigned to the
Parameter Stack is 256 words deep by 16 bits wide.

The Return Stack is used for storing return addresses when
performing Subroutine Calls, or for storing values temporarily.
Because the HS-RTX2010RH uses a separate Return Stack, it
can call and return from subroutines and interrupts with a
minimum of overhead. The Return Stack is 21 bits wide. The
16-bit Index Register, , and the 5-bit Index Page Register,

, hold the top element of this stack, while the remaining
elements are located in stack memory. The stack memory
portion of the Return Stack is 21 bits wide, by 256 words deep.

The data on the Return Stack takes on different meaning,
depending upon whether the Return Stack is being used for
temporary storage of data or to hold a return address during
a subroutine operation (Figure 19).

HS-RTX2010RH Stack Controllers
The two stacks of the HS-RTX2010RH are controlled by
identical Programmable Stack Controllers.

The operation of the Programmable Stack Controllers
depends on the contents of three registers. These registers
are , the Stack Pointer Register, , the Stack
Overflow Limit Register, and , the Stack Underflow
Limit Register (see Figures 15, 16, and 17).

 contains the address of the next stack memory
location to be accessed in a stack push (write) operation.
After a push, the is incremented (post-increment
operation). In a stack pop (read) operation, the stack
memory location with an address one less than the
will be accessed, and then the will be decremented
(pre-decrement operation). At start-up, the first stack
location to have data pushed into it is location zero.

Upper and lower limit values for the stacks are set into the
Stack Overflow Limit Register and in the Stack Underflow
Limit Register. These values allow interrupts to be generated
prior to the occurrence of stack overflow or underflow error
conditions (see section on Stack Error Conditions for more
detail). Since the HS-RTX2010RH can take up to four clock
cycles to respond to an interrupt, the values set in these
registers should include a safety margin which allows valid
stack operation until the processor executes the interrupt
service routine.

TOP NEXT

I
IPR

SPR SVR
SUR

SPR

SPR

SPR
SPR

(ON-CHIP)
STACK MEMORY

PARAMETER STACK

89101112 07 56 1234131415

89101112 07 56 1234131415

RETURN STACK

(ON-CHIP)
STACK MEMORY

RVL PVL

RSU

RSP

12 890 1 0234567 3456789111111111 012
IIPR

PSU
PSP

TOP

NEXT

89101112131415 07 56 1234
SVR

89101112131415 07 56 1234
SPR

89101112131415 07 56 1234
SUR

FIGURE 22. DUAL STACK ARCHITECTURE

HS-RTX2010RH

17

Substacks
Each 256-word stack may be subdivided into up to eight 32
word substacks, four 64 word substacks, or two 128 word
substacks. This is accomplished under hardware control for
simplified management of multiple tasks. Stack size is
selected by writing to bits 1 and 2 of the for the
Parameter Stack, and bits 9 and 10 for the Return Stack.

Substacks are implemented by making bits 5-7 of the
(for the Parameter Stack) and bits 13-15 of the (for the
Return Stack) control bits. For example, if there were eight
32 word substacks implemented in the Parameter Stack, bits
5-7 of the are not incremented, but instead are used
as an offset pointer into the Parameter Stack to indicate the
beginning point (i.e., sub stack number) of each 32 word
substack implemented. Because of this, a particular
substack is selected by writing a value which contains both
the stack pointer value and the substack number to the

.

Each stack has a Stack Start Flag (PSF and RSF) which
may be used for implementing virtual stacks. For the
Parameter Stack, the Start Flag is bit zero of the , and
for the Return Stack it is bit eight. If the Stack Start Flag is
one, the stack starts at the bottom of the stack or substack
(location 0). If the Stack Start Flag is zero, the substack
starts in the middle of the stack. An exception to this occurs
if the overflow limit in is set for a location below the
middle of the stack. In this case, the stacks always start at
the bottom locations. See Table 2 for the possible stack
configurations. Manipulating the Stack Start Flag provides a
mechanism for creating a virtual stack in memory which is
maintained by interrupt driven handlers.

Possible applications for substacks include use as a
recirculating buffer (to allow quick access for a series of
repeated values such as coefficients for polynomial
evaluation or a digital filter), or to log a continuous stream of
data until a triggering event (for analysis of data before and
after the trigger without having to store all of the incoming
data). The latter application could be used in a digital
oscilloscope or logic analyzer.

Stack Error Conditions
Stack errors include overflow, underflow, and fatal errors.
Overflows occur when an attempt is made to push data onto
a full stack. Since the stacks wrap around, the result is that
existing data on the stack will be overwritten by the new data
when an overflow occurs. Underflows occur when an attempt
is made to pop data off an empty stack, causing invalid data
to be read from the stack. In both cases, a buffer zone may
be set up by initializing and so that stack error
interrupts are generated prior to an actual overflow or
underflow. The limits may be determined from the contents
of and using Table 2. The state of all stack
errors may be determined by examining the five least
significant bits of , where the stack error flags may be

read but not written to. All stack error flags are cleared
whenever a new value is written to .

Fatal Stack Error: Each stack can also experience a fatal
stack error. This error condition occurs when an attempt is
made to push data onto or to pop data off of the highest
location of the substack. It does not generate an interrupt
(since the normal stack limits can be used to generate the
interrupt). The fatal errors for the stacks are logically OR’ed
together to produce bit 0 of the Interrupt Base Control
Register, and they are cleared whenever is written to.
The implication of a fatal error is that data on the stack may
have been corrupted or that invalid data may have been read
from the stack.

HS-RTX2010RH Timer/Counters
The HS-RTX2010RH has three 16-bit timers, each of which
can be configured to perform timing or event counting. All
decrement synchronously with the rising edge of TCLK.
Timer registers are readable in a single machine cycle.

The timer selection bits of the determine whether a
timer is to be configured for external event counting or
internal time-base timing. This configures the respective
counter clock inputs to the on-chip TCLK signal for internal
timing, or to the EI5 - EI3 input pins for external signal event
counting. EI5, EI4, and EI3 are synchronized internally with
TCLK. See Table 3 for Timer/Clock selection by bit
values.

The timers (, and) are all free-running,
and when they time out, they reload automatically with the
programmed initial value from their respective Timer Pre
load Registers (→ , → , and
→), then continue timing or counting.

Each timer provides an output to the Interrupt Controller to
indicate when a time-out for the timer has occurred.

The HS-RTX2010RH can determine the state of a timer at
any time either by reading the timer’s value, or upon a time-
out by using the timer’s interrupt (see the Interrupt Controller
section for more information about how timer interrupts are
handled). Figure 23 shows the sequence of Timer/Counter
operations.

SUR

SPR
SPR

SPR

SPR

SUR

SVR

SVR SUR

SVR SUR

IBC

SPR

SPR

IBC

IBC

TC0 TC1 TC2

TPO TC0 TP1 TC1 TP2
TC2

HS-RTX2010RH

18

TABLE 2. STACK/SUBSTACK CONFIGURATIONS FOR GIVEN CONTROL BIT SETTINGS

CONTROL BIT SETTINGS PARAMETER STACK CONFIGURATION

SVR SUR
STACK SIZE

WORDS

STACK RANGE

LOWEST ADDRESS HIGHEST ADDRESS

V7 V6 V5 V4 U2 U1 U0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

X X X 0 0 0 X 32 P7 P6 P5 0 0 0 0 0 P7 P6 P5 1 1 1 1 1

X X X 1 0 0 0 32 P7 P6 P5 0 0 0 0 0 P7 P6 P5 1 1 1 1 1

X X X 1 0 0 1 32 P7 P6 P5 0 0 0 0 0 P7 P6 P5 1 1 1 1 1

X X 0 X 0 1 X 64 P7 P6 0 0 0 0 0 0 P7 P6 1 1 1 1 1 1

X X 1 X 0 1 0 64 P7 P6 0 0 0 0 0 0 P7 P6 1 1 1 1 1 1

X X 1 X 0 1 1 64 P7 P6 0 0 0 0 0 0 P7 P6 1 1 1 1 1 1

X 0 X X 1 0 X 128 P7 0 0 0 0 0 0 0 P7 1 1 1 1 1 1 1

X 1 X X 1 0 0 128 P7 0 0 0 0 0 0 0 P7 1 1 1 1 1 1 1

X 1 X X 1 0 1 128 P7 0 0 0 0 0 0 0 P7 1 1 1 1 1 1 1

0 X X X 1 1 X 256 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 X X X 1 1 0 256 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 X X X 1 1 1 256 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

CONTROL BIT SETTINGS RETURN STACK CONFIGURATION

SVR SUR
STACK SIZE

WORDS

STACK RANGE

LOWEST ADDRESS HIGHEST ADDRESS

V15 V14 V13 V12 U10 U9 U8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

X X X 0 0 0 X 32 P15 P14 P13 0 0 0 0 0 P15 P14 P13 1 1 1 1 1

X X X 1 0 0 0 32 P15 P14 P13 0 0 0 0 0 P15 P14 P13 1 1 1 1 1

X X X 1 0 0 1 32 P15 P14 P13 0 0 0 0 0 P15 P14 P13 1 1 1 1 1

X X 0 X 0 1 X 64 P15 P14 0 0 0 0 0 0 P15 P14 1 1 1 1 1 1

X X 1 X 0 1 0 64 P15 P14 0 0 0 0 0 0 P15 P14 1 1 1 1 1 1

X X 1 X 0 1 1 64 P15 P14 0 0 0 0 0 0 P15 P14 1 1 1 1 1 1

X 0 X X 1 0 X 128 P15 0 0 0 0 0 0 0 P15 1 1 1 1 1 1 1

X 1 X X 1 0 0 128 P15 0 0 0 0 0 0 0 P15 1 1 1 1 1 1 1

X 1 X X 1 0 1 128 P15 0 0 0 0 0 0 0 P15 1 1 1 1 1 1 1

0 X X X 1 1 X 256 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 X X X 1 1 0 256 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1 X X X 1 1 1 256 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

H
S

-R
T

X
2010R

H

19

TABLE 2. STACK/SUBSTACK CONFIGURATIONS FOR GIVEN CONTROL BIT SETTINGS (Continued)

CONTROL BIT SETTINGS PARAMETER STACK CONFIGURATION

SVR SUR FATAL LIMIT UNDERFLOW LIMIT OVERFLOW LIMIT

V7 V6 V5 V4 U2 U1 U0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

X X X 0 0 0 X P7 P6 P5 1 1 1 1 1 P7 P6 P5 0 U6 U5 U4 U3 P7 P6 P5 0 V3 V2 V1 V0

X X X 1 0 0 0 P7 P6 P5 0 1 1 1 1 P7 P6 P5 1 U6 U5 U4 U3 P7 P6 P5 0 V3 V2 V1 V0

X X X 1 0 0 1 P7 P6 P5 1 1 1 1 1 P7 P6 P5 0 U6 U5 U4 U3 P7 P6 P5 1 V3 V2 V1 V0

X X 0 X 0 1 X P7 P6 1 1 1 1 1 1 P7 P6 0 U7 U6 U5 U4 U3 P7 P6 0 V4 V3 V2 V1 V0

X X 1 X 0 1 0 P7 P6 0 1 1 1 1 1 P7 P6 1 U7 U6 U5 U4 U3 P7 P6 0 V4 V3 V2 V1 V0

X X 1 X 0 1 1 P7 P6 1 1 1 1 1 1 P7 P6 0 U7 U6 U5 U4 U3 P7 P6 1 V4 V3 V2 V1 V0

X 0 X X 1 0 X P7 1 1 1 1 1 1 1 P7 0 0 U7 U6 U5 U4 U3 P7 0 V5 V4 V3 V2 V1 V0

X 1 X X 1 0 0 P7 0 1 1 1 1 1 1 P7 1 0 U7 U6 U5 U4 U3 P7 0 V5 V4 V3 V2 V1 V0

X 1 X X 1 0 1 P7 1 1 1 1 1 1 1 P7 0 0 U7 U6 U5 U4 U3 P7 1 V5 V4 V3 V2 V1 V0

0 X X X 1 1 X 1 1 1 1 1 1 1 1 0 0 0 U7 U6 U5 U4 U3 0 V6 V5 V4 V3 V2 V1 V0

1 X X X 1 1 0 0 1 1 1 1 1 1 1 1 0 0 U7 U6 U5 U4 U3 0 V6 V5 V4 V3 V2 V1 V0

1 X X X 1 1 1 1 1 1 1 1 1 1 1 0 0 0 U7 U6 U5 U4 U3 1 V6 V5 V4 V3 V2 V1 V0

CONTROL BIT SETTING PARAMETER STACK CONFIGURATION

SVR SUR FATAL LIMIT UNDERFLOW LIMIT OVERFLOW LIMIT

V15 V14 V13 V12 U10 U9 U8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

X X X 0 0 0 X P15 P14 P13 1 1 1 1 1 P15 P14 P13 0 U14 U13 U12 U11 P15 P14 P13 0 V11 V10 V9 V8

X X X 1 0 0 0 P15 P14 P13 0 1 1 1 1 P15 P14 P13 1 U14 U13 U12 U11 P15 P14 P13 0 V11 V10 V9 V8

X X X 1 0 0 1 P15 P14 P13 1 1 1 1 1 P15 P14 P13 0 U14 U13 U12 U11 P15 P14 P13 1 V11 V10 V9 V8

X X 0 X 0 1 X P15 P14 1 1 1 1 1 1 P15 P14 0 U15 U14 U13 U12 U11 P15 P14 0 V12 V11 V10 V9 V8

X X 1 X 0 1 0 P15 P14 0 1 1 1 1 1 P15 P14 1 U15 U14 U13 U12 U11 P15 P14 0 V12 V11 V10 V9 V8

X X 1 X 0 1 1 P15 P14 1 1 1 1 1 1 P15 P14 0 U15 U14 U13 U12 U11 P15 P14 1 V12 V11 V10 V9 V8

H
S

-R
T

X
2010R

H

20

CONTROL BIT SETTING PARAMETER STACK CONFIGURATION

SVR SUR FATAL LIMIT UNDERFLOW LIMIT OVERFLOW LIMIT

V15 V14 V13 V12 U10 U9 U8 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

X 0 X X 1 0 X P15 1 1 1 1 1 1 1 P15 0 0 U15 U14 U13 U12 U11 P15 0 V13 V12 V11 V10 V9 V8

X 1 X X 1 0 0 P15 0 1 1 1 1 1 1 P15 1 0 U15 U14 U13 U12 U11 P15 0 V13 V12 V11 V10 V9 V8

X 1 X X 1 0 1 P15 1 1 1 1 1 1 1 P15 0 0 U15 U14 U13 U12 U11 P15 1 V13 V12 V11 V10 V9 V8

0 X X X 1 1 X 1 1 1 1 1 1 1 1 0 0 0 U15 U14 U13 U12 U11 0 V14 V13 V12 V11 V10 V9 V8

1 X X X 1 1 0 0 1 1 1 1 1 1 1 1 0 0 U15 U14 U13 U12 U11 0 V14 V13 V12 V11 V10 V9 V8

1 X X X 1 1 1 1 1 1 1 1 1 1 1 0 0 0 U15 U14 U13 U12 U11 1 V14 V13 V12 V11 V10 V9 V8

NOTES:

18. : Stack Pointer Register, : Stack Overflow Register, : Stack Underflow Register.

19. P0 . . P15: Bits, V0 . . V15: Bits, U0 . . U15: Bits.

20. The Overflow Limit is the stack memory address at which an overflow condition will occur during a stack write operation.

21. The Underflow Limit is the stack memory address below which an underflow condition will occur during a stack read operation.

22. The Fatal Limit is the stack memory address at which a fatal error condition will occur during a stack read or write operation.

23. Stack error conditions remain in effect until a new value is written to the .

24. Stacks and sub-stacks are circular: after writing to the highest location in the stack, the next location to be written to will be the lowest location; after reading the lowest location, the highest
location will be read next.

TABLE 2. STACK/SUBSTACK CONFIGURATIONS FOR GIVEN CONTROL BIT SETTINGS (Continued)

SPR SVR SUR
SPR SVR SUR

SPR

H
S

-R
T

X
2010R

H

21

HS-RTX2010RH Interrupt Controller
The HS-RTX2010RH Interrupt Controller manages interrupts
for the HS-RTX2010RH Microcontroller core. Its sources
include two on-chip peripherals and six external interrupt
inputs. The two classes of on-chip peripherals that produce
interrupts are the Stack Controllers and the Timer/Counters.

Interrupt Controller Operation
When one of the interrupt sources requests an interrupt, the
Interrupt Controller checks whether the interrupt is masked
in the Interrupt Mask Register. If it is not, the controller
attempts to interrupt the processor. If processor interrupts
are enabled (bit 4 of the Configuration Register), the
processor will execute an Interrupt Acknowledge cycle,
during which it disables interrupts to ensure proper
completion of the INTA cycle.

In response to the Interrupt Acknowledge cycle, the Interrupt
Controller places an Interrupt Vector on the internal ASIC
Bus, based on the highest priority pending interrupt. The

processor performs a special Subroutine Call to the address
in Memory Page 0 contained in the vector. This special
subroutine call is different in that it saves a status bit on the
Return Stack indicating the call was caused by an interrupt.
Thus, when the Interrupt Handler executes a Subroutine
Return, the processor knows to automatically re-enable
interrupts. Before the Interrupt Handler returns, it must
ensure that the condition that caused the interrupt is cleared.
Otherwise the processor will again be interrupted
immediately upon its return.

Processor interrupts are enabled and disabled by clearing
and setting the Interrupt Disable Flag. When the RTX is
reset, this flag is set (bit 04 of the = 1), disabling the
interrupts. This bit is a write-only bit that always reads as 0,
allowing interrupts to be enabled in only 2 cycles with a
simple read/write operation in which the processor reads the
bit value, then writes it back to the same location. The actual
status of the Interrupt Disable Flag can be read from bit 14
of .

A
S

IC
 B

U
S

ACTIVATE
TIMEOUT

INTERRUPT

ACTIVATE
TIMEOUT

INTERRUPT

ACTIVATE
TIMEOUT

INTERRUPT

EXECUTE
COUNT

EXECUTE
COUNT

EXECUTE
COUNT

INTERRUPT
RESET

INTERRUPT
RESET

INTERRUPT
RESET

INTERRUPT
CONTROLLER

PRELOAD
REGISTER

TP2

INTA CYCLE OR
ASIC READ COMMAND

LOAD TC0

RISING
EDGE

TCLK
RISING

EDGE

TCLK

REGISTER

PRELOAD
REGISTER

TP0 TIMER/COUNTER

TIMER/COUNTER

LOAD TC1

TIMER/COUNTER

LOAD TC2

PRELOAD
REGISTER

TP1

TOP

FIGURE 23. HS-RTX2010RH TIMER/COUNTER OPERATION

TABLE 3. TIMER/COUNTER

 BIT VALUES TIMER CLOCK SOURCE

BIT 09 BIT 08

0 0 TCLK TCLK TCLK

0 1 TCLK TCLK EI3

1 0 TCLK EI4 EI3

1 1 EI5 EI4 EI3

IBC

TC2 TC1 TC0

CR

CR

HS-RTX2010RH

22

During read and write operations to the Configuration
Register, (), interrupts are inhibited to allow the program
to save and restore the state of the Interrupt Enable bit.

In addition to disabling interrupts at the processor level, all
interrupts except the Non-Maskable Interrupt (NMI) can be
individually masked by the Interrupt Controller by setting the
appropriate bit in the Interrupt Mask Register ().
Resetting the HS-RTX2010RH causes all bits in the to
be cleared, thereby unmasking all interrupts.

The NMI on the HS-RTX2010RH has two modes of operation
which are controlled by the NMI_MODE Flag (bit 11 of the

). When this bit is cleared (0), the NMI can not be
masked, and can interrupt any cycle. This allows a fast
response to the NMI, but may not allow a return from interrupt
to operate correctly. NMI_MODE is cleared when the
processor is Reset. When NMI_MODE is set (1), a return
from the NMI service routine will result in the processor
continuing execution in the state it was in when it was
interrupted. When in this second mode NMI may be inhibited
by the processor during certain critical operations (see
Interrupt Suppression), and may, therefore, not be serviced as
quickly as in the first mode of operation. When servicing an
NMI_MODE set to 1, further NMIs and maskable interrupts
are disabled until the NMI Interrupt Service Routine has
completed, and a return from interrupt has been executed.

The Interrupt Controller prioritizes interrupt requests and
generates an Interrupt Vector for the highest priority interrupt
request. The address that the vector points to is determined
by the source of the interrupt and the contents of the
Interrupt Base/Control Register (). See Figure 12 for
the Interrupt Vector Register bit assignments. Because
address bits MA19-MA16 are always zero in an Interrupt

Acknowledge cycle, the entry point to the Interrupt Handlers
must reside on Memory Page zero.

Because address bits MA04-MA01 are always zero in an
Interrupt Acknowledge cycle, Interrupt Vectors are 32 bytes
apart. This means that Interrupt Handler routines that are 32
bytes or less can be compiled directly into the Interrupt
Table. Interrupt Handlers greater than 32 bytes must be
compiled separately and called from the Interrupt Table.

The rest of the vector is generated as indicated in Table 1. To
guarantee that the Interrupt Vector will be stable during an
INTA cycle, the Interrupt Controller inhibits the generation of a
new Interrupt Vector while INTA is high, and will not begin
generating a new Interrupt Vector on either edge of INTA.

The Interrupt Vector can also be read from the Interrupt
Vector Register () directly. This allows interrupt
requests to be monitored by software, even if they are
disabled by the processor. If no interrupts are being
requested, bit 09 of the will be 1.

External interrupts EI5-EI1 are active HIGH level-sensitive
inputs. (Note: When used as Timer/Counter inputs, EI5-EI3
are edge sensitive). Therefore, the Interrupt Handlers for
these interrupts must clear the source of interrupt prior to
returning to the interrupted code. The external NMI,
however, is an edge-sensitive input which requires a rising
edge to request an interrupt. The NMI input also has a glitch
filter circuit which requires that the signal that initiates the NMI
must last at least two rising and two falling edges of ICLK.

Finally, a mechanism is provided by which an interrupt can
be requested by using a software command. The Software
Interrupt (SWI) is requested by executing an instruction that
will set an internal flip-flop attached to one input of the

TABLE 4. INTERRUPT SOURCES, PRIORITIES AND VECTORS

PRIORITY INTERRUPT SOURCE SENSITIVITY BIT

VECTOR ADDRESS BITS

09 08 07 06 05

0 (High) NMI Non-Maskable Interrupt Pos Edge N/A 0 1 1 1 1

1 EI1 External Interrupt 1 High Level 01 0 1 1 1 0

2 PSU Parameter Stack Underflow High Level 02 0 1 1 0 1

3 RSU Return Stack Underflow High Level 03 0 1 1 0 0

4 PSV Parameter Stack Overflow High Level 04 0 1 0 1 1

5 RSV Return Stack Overflow High Level 05 0 1 0 1 0

6 EI2 External Interrupt 2 High Level 06 0 1 0 0 1

7 TCI0 Timer/Counter 0 Edge 07 0 1 0 0 0

8 TCI1 Timer/Counter 1 Edge 08 0 0 1 1 1

9 TCI2 Timer/Counter 2 Edge 09 0 0 1 1 0

10 EI3 External Interrupt 3 High Level 10 0 0 1 0 1

11 EI4 External Interrupt 4 High Level 11 0 0 1 0 0

12 EI5 External Interrupt 5 High Level 12 0 0 0 1 1

13 (Low) SWI Software Interrupt High Level 13 0 0 0 1 0

N/A None No Interrupt N/A N/A 1 0 0 0 0

IMR

CR

IMR
IMR

CR

IBC

IVR

IVR

HS-RTX2010RH

23

Interrupt Controller. The SWI is reset by executing an
instruction that clears the flip-flop. The flip-flop is accessed
by I/O Reads and Writes.

Because the SWI interrupt may not be serviced immediately,
the instructions which immediately follow the SWI instruction
should not depend on whether or not the interrupt has been
serviced, and should cause a one or two-cycle idle condition
(Typically, this is done with one or two NOP instructions).

If an interrupt condition occurs, but “goes away” before the
processor has a chance to service it, a “No Interrupt” vector is
generated. A “No Interrupt” vector is also generated if an
Interrupt Acknowledge cycle takes less than two cycles to
execute and no other interrupt conditions need to be serviced.

To prevent unforeseen errors, it is recommended that valid
code be supplied at every Interrupt Vector location, including
the “No Interrupt” vector, which should always be initialized
with valid code.

It is recommended that Interrupt Handlers save and restore
the contents of .

Interrupt Suppression
The HS-RTX2010RH allows maskable interrupts and Mode
1 NMIs (the NMI_MODE Flag in bit 11 of the is set) to
be suppressed, delaying them temporarily while critical
operations are in progress. Critical operations are instruction
sequences and hardware operations that, if interrupted,
would result in the loss of data or misoperation of the
hardware. (Note: Only the processor may suppress NMIs.)

Standard critical operations during which interrupts are
automatically suppressed by the processor include Streamed
instructions (see the description of the register), Long Call
sequences (see “Subroutine Calls and Returns”), and loading

. In addition to this, external devices can also suppress
maskable interrupts during critical operations by applying a
HIGH level on the INTSUP pin for as long as required.

Since the Mode 0 NMI (the NMI_MODE Flag in bit 11 of the
 is cleared) can cause the processor to perform an

Interrupt Acknowledge Cycle in the middle of these critical
operations, thereby preventing a normal return to the
interrupted instruction, a Subroutine Return should be used
with care from a Mode 0 NMI service routine. The Mode 0
NMI should be used only to indicate critical system errors,
and the Mode 0 NMI handler should re-initialize the system.

Interrupts which have occurred while interrupt suppression is
in effect will be recognized on a priority basis as soon as the
suppression terminates, provided the condition which
generated the interrupt still exists.

Stack Error Interrupts
The Stack Controllers request an interrupt whenever a stack
overflow or underflow condition exists. These interrupts can
be cleared by rewriting . See the section on “Dual

Stack Architecture” for more information regarding how the
limits set into and are used.

Stack Overflow: A stack overflow occurs when data is
pushed onto the stack location pointed to by the , as
determined in Table 5. After the processor is reset, this is
location 255 in either the Parameter Stack or Return Stack.
A stack overflow interrupt request stays in effect until cleared
by writing a new value to the . In addition to generating
an interrupt, the state of the stack overflow flags may be
read out of the , bit 3 for the Parameter Stack, and bit
4 for the Return stack. See Figures 13, 15 and 16.

Stack Underflow: The stack underflow limit occurs when
data is popped off the stack location immediately below that
pointed to by the , as determined in Table 2. The state
of the stack underflow error flags may be read out of bits 1
and 2 of the for the Parameter and Return stacks
respectively. In the reset state of the , an underflow will
be generated at the same time that a fatal error is detected.
An underflow buffer region can be set up by selecting an
underflow limit greater than zero by writing the
corresponding value into the . The stack underflow
interrupt request stays in effect until a new value is written
into the , at which time it is cleared.

Timer/Counter Interrupts
The timers generate edge-sensitive interrupts whenever they
are decremented to 0. Because they are edge-sensitive and
are cleared during an Interrupt Acknowledge cycle or during
the direct reading of by software, no action is required
by the handlers to clear the interrupt request.

The HS-RTX2010RH ALU
The HS-RTX2010RH has a 16-bit ALU capable of
performing standard arithmetic and logic operations:

• ADD and SUBTRACT (A-B and B-A; with and without
carry)

• AND, OR, XOR, NOR, NAND, XNOR, NOT

The and registers can also undergo single bit
shifts in the same cycle as a logic or arithmetic operation.

In Figure 24, the control and data paths to the ALU are
shown. Except for and , each of the internal
core registers can be addressed explicitly, as can other
internal registers in special operations such as in Step
instructions. In each of these cases, the input would be
addressed as a device on the ASIC Bus.

When executing these instructions, the arithmetic/logic
operand (a) starts out in and is placed on the T-bus.
Operand (b) arrives at the ALU on the Y-bus, but can come
from one of the following four sources: ; an internal
register; an ASIC Bus device; or from the 5 least significant
bits of . The source of operand (b) is determined by
the instruction code in . The result of the ALU
operation is placed into .

CR

CR

I

CR

CR

SPR

IBC SUR

SVR

SPR

IBC

SUR

IBC
SUR

SUR

SPR

IVR

TOP NEXT

TOP NEXT

TOP

NEXT

IR
IR
TOP

HS-RTX2010RH

24

Step Arithmetic instructions which are performed through the
ALU are divide and square root. Execution of each step of the
arithmetic operation takes one cycle, a 32/16-bit Step Divide
takes 21 cycles, and a 32/16-bit Step Square Root takes 25
cycles. Sign and scaling functions are controlled by the ALU
function and shift options, which are part of the coded
instruction contained in . See Table 20 and Table 21
and the Programmer’s Reference Manual for details.

Unsigned Step Divide operation assumes a double precision
(32-bit) dividend, with the most significant word placed in

, the less significant word in , and the divisor in
. In each step, if the contents in are equal to or

greater than the contents in (and therefore no borrow
is generated), then the contents of are subtracted
from the contents of . The result of the subtraction is
placed into . The contents of and are
then jointly shifted left one bit (32-bit left shift), where the
value shifted into the least significant bit of is the value
of the Borrow bit on the first pass, or the value of the
Complex Carry bit on each of the subsequent passes. On
the 15th and final pass, only is shifted left, receiving
the value of the Complex Carry bit into the LSB. is not
shifted. The final result leaves the quotient in , and the
remainder in .

During a Step Square Root operation, the 32-bit argument is
assumed to be in and , as in the Step Divide
operation. The first step begins with containing zeros.
The Step Square Root is performed much like the Step
Divide, except that the input from the Y-bus is the logical OR
of the contents of and the value in shifted one

place to the left (2*). When the subtraction is
performed, is OR’ed into , and is shifted
one place to the right. At the end of the operation, the square
root of the original value is in and , and the
remainder is in .

HS-RTX2010RH Floating Point/DSP On
Chip Peripherals

The HS-RTX2010RH Multiplier-Accumulator
The Hardware Multiplier-Accumulator (MAC) on the
HS-RTX2010RH functions as both a Multiplier, and a
Multiplier- Accumulator. When used as a Multiplier alone, it
multiplies two 16-bit numbers, yielding a 32-bit product in
one clock cycle. When used as a Multiplier-Accumulator, it
multiplies two 16-bit numbers, yielding an intermediate 32-bit
product, which is then added to the 48-bit Accumulator. This
entire process takes place in a single clock cycle.

The Multiplier-Accumulator functions are activated by I\O
Read and Write instructions to ASIC Bus addresses
assigned to the MAC.

The MAC’s input operands come from three possible
sources (see Figure 25):

1. The and registers.

2. The Parameter (Data) Stack and memory via
(Streamed mode only - see the Programmer’s Reference
Manual).

3. Memory via and an input from the ASIC Bus
(Streamed mode only - see the Programmer’s Reference
Manual).

OPERAND
(A)

Y
-B

U
S

T-BUS

ALU

PROGRAM
MEMORY

SELECT
OPERAND (B)

TOP

SHIFTER

ALU
CONTROL

Y T

5 LEAST
SIGNIFICANT

BITS
ASIC BUS
DEVICE

INTERNAL
REGISTERS

NEXT

DECODEI R

I R

NOTE: Data Paths are represented by solid lines; Control Paths are represented by dashed lines.

FIGURE 24. ALU OPERATIONS-CONTROL PATHS AND DATA FLOW

IR

TOP NEXT
MD TOP

MD
MD

TOP
TOP TOP NEXT

NEXT

NEXT
TOP

EXT
TOP

TOP NEXT
MD

SR MD

MD
SR MD SR

MD NEXT
TOP

TOP EXT

NEXT

EXT

HS-RTX2010RH

25

These inputs can be treated as either signed (two’s
complement) or unsigned integers, depending on the form of
the instruction used. In addition, if the ROUND option is
selected, the Multiplier can round the result to 16 bits. Note
that the MAC instructions do not pop the Parameter Stack;
the contents of and remain intact.

For the Multiplier, the product is read from the Multiplier High
Product Register, , which contains the upper 16 bits of
the product, and the Multiplier Low Product Register, ,
which contains the lower 16 bits. For the Multiplier-
Accumulator, the accumulated product is read from the
Multiplier Extension Register, , which contains the
upper 16 bits, the , which contains the middle 16 bits,
and the , which contains the low 16 bits. The registers
may be read in any order, and there is no requirement that
all registers be read. Reading from any of the three registers
moves its value into , and pushes the original value in

 into . If the read is from or , the
original value of is lost, i.e. it is not pushed onto stack
memory. This permits overwriting the original operands left
in and , which are not popped by the MAC
operations. If the read is from , the original value of

is pushed onto the stack. In addition to this, any of the
three MAC registers can be directly loaded from . This
pops into and the Parameter Stack into .

If 32-bit precision is not required, the multiplier output may be
rounded to 16 bits. This is accomplished by setting the ROUND
bit in the Interrupt Base/Control Register, , to 1. If the
ROUND bit is set to 1, all operations that use the Multiplier
automatically round the least significant 16 bits of the result into
the most significant 16 bits. The rounding is achieved by adding
8000H to the least significant 16 bits (during the same cycle as
the multiply). Thus, if the ROUND bit is set:

1. If the most significant bit of the is set (1), the
is incremented.

2. If the most significant bit of the is not set (0), the
 is left unchanged.

The ROUND bit functions independently of whether the
signed or unsigned bit is used.

The multiply instructions suppress interrupts during the
multiplication cycle. Reading , or also
suppresses interrupts during the read. This allows a
multiplication operation to be performed, and both the upper
and lower registers to be read sequentially, with no danger of
a non-NMI interrupt service routine corrupting the contents
of the registers between reads. The multiply-accumulate
instructions do not suppress interrupts during instruction
execution.

For additional information on the HS-RTX2010RH MAC see
the Programmer’s Reference Manual.

The HS-RTX2010RH On-Chip Barrel Shifter And
Leading Zero Detector
The HS-RTX2010RH has both a 32-bit Barrel Shifter and a
32-bit Leading Zero Detector for added floating-point and
DSP performance. The inputs to the Barrel Shifter and
Leading Zero Detector are the top two elements of the
Parameter Stack, the and registers.

The Barrel Shifter uses a 5-bit count stored in the
Register to determine the number of places to right or left
shift the double word operand contained in the and

 registers. The output of the Barrel Shifter is stored in
the and registers, with the top 16 bits in
and the bottom 16 bits in .

NEXT

S
IG

N
 E

X
T.

TO
P

M
X

R

TO
P

M
H

R

TO
P

MLRMHRMXR

16 16

DATA STACK ASIC BUS

5

32

MAC
16 x 16

TOP

32-BIT BRL SHIFTER

32-BIT LZD

REGISTER

48

FIGURE 25. HS-RTX2010RH FLOATING POINT/DSP LOGIC

TOP NEXT

MHR
MLR

MXR
MHR

MLR

TOP
TOP NEXT MHR MLR

NEXT

TOP NEXT
MXR

NEXT
TOP

NEXT TOP NEXT

IBC

MLR MHR

MLR
MHR

MHR MLR

TOP NEXT

MXR

TOP
NEXT

MHR MLR MHR
MLR

HS-RTX2010RH

26

The Leading Zero Detector is used to normalize the double
word operand contained in the and registers.
The number of leading zeroes in the double word operand
are counted, and the count stored in the register. The
double word operand is then logically shifted left by this
count, and the result stored in the and
registers. Again the upper 16 bits are in , and the
lower 16 bits are in . This entire operation is done in
one clock cycle with the normalize instruction.

HS-RTX2010RH ASIC Bus Interface
The HS-RTX2010RH ASIC Bus services both internal
processor core registers and the on-chip peripheral
registers, and eight external off-chip ASIC Bus locations. All
ASIC Bus operations require a single cycle to execute and
transfer a full 16-bit word of data. The external ASIC Bus
maps into the last eight locations of the 32 location ASIC
Address Space. The three least significant bits of the
address are available as the ASIC Address Bus. The
addresses therefore map as shown in Table 5.

HS-RTX2010RH Extended Cycle Operation
The HS-RTX2010RH bus cycle operation can be optionally
extended for two types of accesses:

1. USER Memory Cycles

2. ASIC Bus Read Operations

The extension of normal HS-RTX2010RH bus cycle timing
allows the interface of the processor to some peripherals,
and slow memory devices, without using externally
generated wait states. The bus cycle is extended by the
same amount (1 TCLK) as it would be if one wait state was
added to the cycle, but the control signal timing is somewhat
different (see Timing Diagrams). In a one wait state bus
cycle, PCLK is High for 1/2 TCLK period, and Low for 1-1/2
TCLK periods (i.e., PCLK is held Low for one additional
TCLK period). In an extended cycle, PCLK is High for 1
TCLK period, and Low for 1 TCLK period (i.e., both the High
and Low portions of the PCLK period are extended by 1/2
TCLK period).

Setting the Cycle Extend bit (CYCEXT), which is bit 7 of the
Register, will cause extended cycles to be used for all

accesses to USER memory. Setting the ASIC Read Cycle
Extend bit (ARCE), which is bit 13 of the Register, will
cause extended cycles to be used for all Read accesses on
the external ASIC Bus. Both the CYCEXT bit and the ARCE
bit are cleared on Reset.

HS-RTX2010RH Memory Access

The HS-RTX2010RH Memory Bus Interface
The HS-RTX2010RH can address 1 Megabyte of memory,
divided into 16 non-overlapping pages of 64K bytes. The
memory page accessed depends on whether the memory
access is for Code (instructions and literals), Data, User
Memory, or Interrupt Code. The page selected also depends
on the contents of the Page Control Registers: the Code
Page Register (), the Data Page Register (), the
User Page Register (), and the Index Page Register
(). Furthermore, the User Base Address Register
() and the Interrupt Base/Control Register () are
used to determine the complete address for User Memory
accesses and Interrupt Acknowledge cycles. External
memory data is accessed through .

When executing code other than an Interrupt Service
routine, the memory page is determined by the contents of
the . Bits 03-00 generate address bits MA19-MA16, as
shown in Figure 18. The remainder of the address (MA15-
MA01) comes from the Program Counter Register ().
After resetting the processor, both the and the
are cleared and execution begins at page 0, word 0.

A new Code page is selected by writing a 4-bit value to the
. The value for the Code page is input to the

through a preload procedure which withholds the value for
one clock cycle before loading the to ensure that the
next instruction is executed from the same Code page as the
instruction which set the new Code page. Execution
immediately thereafter will continue with the next instruction
in the new page.

An Interrupt Acknowledge cycle is a special case of an
Instruction Fetch cycle. When an Interrupt Acknowledge
cycle occurs, the contents of the and are saved
on the Return Stack and then the is cleared to point to
page 0. The Interrupt Controller generates a 16-bit address,
or “vector”, which points to the code to be executed to
process the interrupt. To determine how the Interrupt Vector
is formed, refer to Figure 12 for the register bit assignments,
and also to the Interrupt Controller section.

The page for data access is provided by either or
, as shown in Figures 18 and 20. Data Memory

Access instructions can be used to access data in a memory
page other than that containing the program code. This is
done by writing the desired page number into the Data Page
Register () and setting bit 5 (DPRSEL) of the

TABLE 5. ASIC BUS MAP

ASIC BUS SIGNAL

ASIC ADDRESSGA02 GA01 GA00

0 0 0 18H

0 0 1 19H

0 1 0 1AH

0 1 1 1BH

1 0 0 1CH

1 0 1 1DH

1 1 0 1EH

1 1 1 1FH

TOP EXT

MXR

MHR MLR
MHR

MLR

IBC

CR

CPR DPR
UPR

IPR
UBR IBC

EXT

CPR

PC
PC CPR

CPR CPR

CPR

CPR PC
CPR

CPR
DPR

DPR IBC

HS-RTX2010RH

27

Register to 1. If is set to equal , or if DPRSEL = 0,
data will be accessed in the Code page. The status of the
DPRSEL bit is saved and restored as a result of a
Subroutine Call or Return. When the HS-RTX2010RH is
reset, points to page 0 and DPRSEL resets to 0,
selecting the .

USER MEMORY consists of blocks of 32 words that can be
located anywhere in memory. The word being accessed in a
block is pointed to by the five least significant bits of the User
Memory instruction (see Table 17), eliminating the need to
explicitly load an address into before reading or
writing to the location. Upon HS-RTX2010RH reset, is
cleared and points to the block starting at word 0, while

 is cleared so that it points to page 0. The word in the
block is pointed to by the five least significant bits of the User
Memory instruction and bits 05-01 of the . These bits

from these two registers are logically OR’ed to produce the
address of the word in memory. See Figure 21.

Word And Byte Main Memory Access
Using Main Memory Access instructions, the HS-RTX2010RH
can perform either word or single byte Main Memory
accesses, as well as byte swapping within 16-bit words.

Bit 12 of the Memory Access Opcode (see Table 16), is used
to determine whether byte or word operations are to be
performed (where bit 12 = 0 signifies a word operation, and
bit 12 = 1 signifies a byte operation). In addition, the
determination of whether a byte swap is to occur depends on
whether Addressing Mode 0 or Mode 1 is in effect (as
determined by bit 2 of the), and on whether an even
or odd address is being accessed (see Figures 26 and 27).

DPR CPR

DPR
CPR

TOP
UBR

UPR

UBR

CR

FIGURE 26. MEMORY ACCESS (WORD) FIGURE 27. MEMORY ACCESS (BYTE)

0

1 1

0

0

1

0

0

1

0

01

1

1

0

1

15 8 7 0

15 8 7 0

PROCESSOR

MEMORY

15 8 7 0

15 8 7 0

PROCESSOR

MEMORY

15 8 7 0

15 8 7 0

PROCESSOR

MEMORY

15 8 7 0

15 8 7 0

PROCESSOR

MEMORY

WORD WRITE

WORD READ

WORD WRITE

WORD READ

0

0

0

0

IR
BIT 12

CR
BIT 2

ADDRESS
EVEN/ODDDATA ACCESS (16-BIT)

BYTE READ PROCESSOR

MEMORY

0

15 8 7 0

15 8 7 0

BYTE WRITE PROCESSOR

MEMORY

UNCHANGED

15 8 7 0

15 8 7 0

BYTE WRITE PROCESSOR

MEMORY

15 8 7 0

15 8 7 0

UNCHANGED

BYTE READ
PROCESSOR

MEMORY

0

15 8 7 0

15 8 7 0

1

1

1

1

0

0

1

1

1

0

1

0

1

0

1

0

1

0

1

0

DATA ACCESS (8 -BIT) ADDRESS
EVEN/ODDBIT 2

CR
BIT 12

IR

HS-RTX2010RH

28

Whenever a word of data is read by a Data Memory operation
into the processor, it is first placed in the Register. By
the time the instruction that reads that word of data is
completed, however, the data may have been moved,
optionally inverted, or operated on by the ALU, and placed in
the Register. Whenever a Data Memory operation
writes to memory, the data comes from the Register.

The Byte Order Bit is bit 2 of the Configuration Register,
 (see Figure 11 in the “RTX Internal Registers

Section). This bit is used to determine whether the default
(Mode 0) or byte swap (Mode 1) method will be used in the
Data Memory accesses.

Word Access is designated when the bit 12 = 0 in the
Memory Access Opcode, and can take one of two forms,
depending upon the status of , bit 2.

When bit 2 = 0, the Mode 0 method of word access is
designated. Word access to an even address (A0 = 0) results
in an unaltered transfer of data, as shown in Figure 26. Word
access to/from an odd address (A0 = 1) while in this mode will
effectively cause the Byte Order Bit to be complemented and
will result in the bytes being swapped.

When the bit 2 = 1, the Mode 1 method of word
access is designated. Access to an even address (A0 = 0)
results in a data transfer in which the bytes are swapped.
Word access to an odd address (A0 = 1) while in this mode
will effectively cause the Byte Order Bit to be complemented
with the net result that no byte swap takes place when the
data word is transferred. See Figure 26.

Byte Access is designated when the bit 12 = 1 in the
Memory Access Opcode, and can also take one of two
forms, depending on the value of Bit 2.

When the bit 2 = 0, a Byte Read from an even
address in Mode 0 causes the upper byte (MD15-MD08) of
memory data to be read into the lower byte position
(MD07-MD00) of , while the upper byte (MD15-MD08)
is set to 0. A Byte Write operation accessing an even
address will cause the byte to be written from the lower byte
position (MD07-MD00) of into the upper byte position
(MD15-MD08) of memory. The data in the lower byte
position (MD07-MD00) in memory will be left unaltered.
Accessing an odd address for either of these operations will
cause the Byte Order Bit to be complemented, with the net
result that no swap will occur. See Figure 27.

When bit 2 = 1, the Mode 1 method of memory
access is used. Accessing an even address in this mode
means that a Byte Read operation will cause the lower byte
of data to be transferred without a swap operation. A Byte
Write in this mode will also result in an unaltered byte
transfer. Conversely, accessing an odd address for a byte
operation while in Mode 1 will cause the Byte Order Bit to be
complemented. In a Byte Read operation, this will result in
the upper byte (MD15-MD08) of data being swapped into the

lower byte position (MD07-MD00), while the upper byte is
set to 0 (MD15-MD08 set to 0). See Figure 27. A Byte Write
operation accessing an odd address will cause the byte to
be swapped from the lower byte position (MD07-MD00) of
the processor register into the upper byte position
(MD15-MD08) of the Memory location. The data in the lower
byte position (MD07-MD00) in that Memory location will be
left unaffected.

NOTE: These features are for Main Memory data access only, and
have no effect on instruction fetches, long literals, or User Data
Memory.

Subroutine Calls And Returns
The RTX can perform both “short” subroutine calls and
“long” subroutine calls. A short subroutine call is one for
which the subroutine code is located within the same Code
page as the Call instruction, and no processor cycle time is
expended in reloading the .

Performing a long subroutine call involves transferring
execution to a different Code page. This requires that the

 be loaded with the new Code page as described in
the Memory Access Section, followed immediately by the
Subroutine Call instruction. This adds two additional cycles
to the execution time for the Subroutine Call.

For all instructions except Subroutine Calls or Branch
instructions, bit 5 of the instruction code represents the
Subroutine Return Bit. If this bit is set to 1, a Return is
performed whereby the return address is popped from the
Return Stack, as indicated in Figure 19. The page for the
return address comes from the . The contents of the

 Register are written to the , and the contents of
the are written to the so that execution resumes
at the point following the Subroutine Call. The Return Stack
is also popped at this time.

HS-RTX2010RH Software
The HS-RTX2010RH is designed around the same
architecture as the RTX 2000, and is a hardware
implementation of the Virtual Forth Engine. As such, it does
not require the additional assembly or machine language
software development typical of most real-time
microcontrollers.

The instruction set for the HS-RTX2010RH TForth compiler
combines multiple high level instructions into single machine
instructions without having to rely on either pipelines or
caches. This optimization yields an effective throughput
which is faster than the processor’s clock speed, while
avoiding the unpredictable execution behavior exhibited by
most RISC processors caused by pipeline flushes and cache
misses.

2010 Compilers
Intersil offers a complete ANSI C cross development
environment for the HS-RTX2010RH. The environment
provides a powerful, user-friendly set of software tools

NEXT

TOP
NEXT

CR

IR

CR

CR

CR

IR

CR

CR

NEXT

NEXT

CR

CPR

CPR

IPR
I PC

IPR CPR

HS-RTX2010RH

29

designed to help the developers of embedded real-time
control systems get their designs to market quickly. The
environment includes the optimized ANSI C language
compiler, symbolic menu driven C language debugger, RTX
assembler, linker, profiler, and PROM programmer interface.

The HS-RTX2010RH TForth compiler from Intersil translates
Forth-83 source code to HS-RTX2010RH machine
instructions. This compiler also provides support for all of the
HS-RTX2010RH instructions specific to the processor’s
registers, peripherals, and ASIC Bus. See the tables in the
following sections for instruction set information.

TABLE 6. INSTRUCTION SET SUMMARY

NOTATIONS DEFINITION

m-read Read data (byte or word) from memory location addressed by contents of Register into Register.

m-write Write contents (byte or word) of Register into memory location addressed by contents of Register.

g-read Read data from the ASIC address (address field ggggg of instruction) into Register. A read of one of the on-
chip peripheral registers can be done with a g-read command.

g-write Write contents of Register to ASIC address (address field ggggg of instruction). A write to one of the on-chip
peripheral registers can be done with a g-write command.

u-read Read contents (word only) of User Space location (address field uuuuu of instruction) into Register.

u-write Write contents (word only) of Register into User Space location (address field uuuuu of instruction).

SWAP Exchange contents of and registers.

DUP Copy contents of Register to Register, pushing previous contents of onto Stack Memory.

OVER Copy contents of Register to Register, pushing original contents of to Register and
original contents of Register to Stack Memory.

DROP Pop Parameter Stack, discarding original contents of Register, leaving the original contents of in
and the original contents of the top Stack Memory location in .

inv Perform 1’s complement on contents of Register, if i bit in instruction is 1.

alu-op Perform appropriate cccc or aaa ALU operation from Table 20 on contents of and registers.

shift Perform appropriate shift operation (ssss field of instruction) from Table 21 on contents of and/or
registers.

d Push short literal d from ddddd field of instruction onto Parameter Stack (where ddddd contains the actual value of the
short literal). The original contents of are pushed into , and the original contents of. are pushed
onto Stack Memory.

D Push long literal D from next sequential location in program memory onto Parameter Stack. The original contents of
 are pushed into , and the original contents of are pushed onto Stack Memory.

R Perform a Return From Subroutine if bit = 1.

NOTE: All unused opcodes are reserved for future architectural enhancements.

TOP TOP

NEXT TOP

TOP

TOP

TOP

TOP

TOP NEXT

TOP NEXT NEXT

NEXT TOP TOP NEXT
NEXT

TOP NEXT TOP
NEXT

TOP

TOP NEXT

TOP NEXT

TOP NEXT NEXT

TOP NEXT NEXT

TABLE 7. INSTRUCTION REGISTER BIT FIELDS (BY FUNCTION)

FUNCTION CODE DEFINITION

ggggg Address field for ASIC Bus locations

uuuuu Address field for User Space memyyory locations

cccc aaa ALU functions (see Table 20)

ddddd Short literals (containing a value from 0 to 31)

ssss Shift Functions (see Table 21)

HS-RTX2010RH

30

TABLE 8. HS-RTX2010RH AND ACCESS OPERATIONS (Note)

OPERATION
(g-read, g-write)

RETURN
BIT

VALUE

ASIC
ADDRESS

ggggg REGISTER FUNCTION

Read mode 0 00000 Pushes the contents of into (with no pop of the Return Stack)

Read mode 1 00000 Pushes the contents of into , then performs a Subroutine Return

Write mode 0 00000 Pops the contents of into (with no push of the Return Stack)

Write mode 1 00000 Performs a Subroutine Return, then pushes the contents of into

Read mode 0 00001 Pushes the contents of into , popping the Return Stack

Read mode 1 00001 Pushes the contents of into without popping the Return Stack, then
executes the Subroutine Return

Write mode 0 00001 Pushes the contents of into popping the Parameter Stack

Write mode 1 00001 Performs a Subroutine Return, then pushes the contents of into

Read mode 0 00010 Pushes the contents of shifted left by one bit, into (the Return Stack
is not popped)

Read mode 1 00010 Pushes the contents of shifted left by one bit, into (the Return Stack
is not popped), then performs a Subroutine Return

Write mode 0 00010 Pushes the contents of into as a “stream” count, indicating that the
next instruction is to be performed a specified number of times; the Parameter
Stack is popped

Write mode 1 00010 Performs a Subroutine Return, then pushes the stream count into

Read mode 0 00111 Pushes the contents of into

Read mode 1 00111 Pushes the contents of into , then performs a Subroutine Return

Write mode 0 00111 Performs a Subroutine Call to the address contained in , popping the
Parameter Stack

Write mode 1 00111 Pushes the contents of onto the Return Stack before executing the
Subroutine Return

NOTE: See the RTX Programmer’s Reference Manual for a complete listing of typical software functions.

I PC

I I TOP

I I TOP

I TOP I

I TOP I

I I TOP

I I TOP

I TOP I

I TOP I

I I TOP

I I TOP

I TOP I

I I

PC PC TOP

PC PC TOP

PC TOP

PC TOP

TABLE 9. HS-RTX2010RH RESERVED I/O OPCODES

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 1 0 R 0 1 1 0 1 Select

1 0 1 1 0 0 0 0 0 0 R 0 1 1 0 1 Select

1 0 1 1 0 0 0 0 1 0 R 1 0 0 0 0 Set SOFTINT

1 0 1 1 0 0 0 0 0 0 R 1 0 0 0 0 Clear SOFTINT

DPR

CPR

TABLE 10. SUBROUTINE CALL INSTRUCTIONS

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 a a a a a a a a a a a a a a a Call word address
aaaa aaaa aaaa aaa0, in the page
indicated by . This address is
produced when the processor
performs a left shift on the address in
the instruction code.

Subroutine Call Bit
(Bit 15 = 0: Call,

Bit 15 = 1: No Call)

CPR

HS-RTX2010RH

31

TABLE 11. SUBROUTINE RETURN

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- - - - - - - - - - R - - - - - Return from subroutine

Subroutine Return Bit (Note)
(Bit 5, R = 0: No return R = 1: Return)

NOTE: Does not apply to Subroutine Call or Branch Instructions. A Subroutine Return can be combined with any other instruction
(as implied here by hyphens).

TABLE 12. BRANCH INSTRUCTIONS

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 0 0 b b a a a a a a a a a DROP and branch if = 0

1 0 0 0 1 b b a a a a a a a a a Branch if = 0

1 0 0 1 0 b b a a a a a a a a a Unconditional branch

1 0 0 1 1 b b a a a a a a a a a Branch and decrement if ≠ 0;
Pop if = 0

Branch Address
(Note)

NOTE: See the Programmer’s Reference Manual for further information regarding the branch address field.

TOP

TOP

I I
I I

TABLE 13. REGISTER AND I/O ACCESS INSTRUCTIONS

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 i 0 0 R g g g g g g-read DROP inv

1 0 1 1 1 1 1 i 0 0 R g g g g g g-read inv

1 0 1 1 c c c c 0 0 R g g g g g g-read OVER alu-op

1 0 1 1 0 0 0 i 1 0 R g g g g g DUP g-write inv

1 0 1 1 1 1 1 i 1 0 R g g g g g g-write inv

1 0 1 1 c c c c 1 0 R g g g g g g-read SWAP alu-op

TABLE 14. SHORT LITERAL INSTRUCTIONS

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 i 0 1 R d d d d d d DROP inv

1 0 1 1 1 1 1 i 0 1 R d d d d d d inv

1 0 1 1 c c c c 0 1 R d d d d d d OVER alu-op

1 0 1 1 1 1 1 i 1 1 R d d d d d d SWAP DROP inv

1 0 1 1 c c c c 1 1 R d d d d d d SWAP alu-op

HS-RTX2010RH

32

TABLE 15. LONG LITERAL INSTRUCTIONS

INSTRUCTION CODE OPERATION

(1ST CYCLE) (2ND CYCLE)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 0 0 0 i 0 0 R 0 0 0 0 0 D SWAP inv

1 1 0 1 1 1 1 i 0 0 R 0 0 0 0 0 D SWAP SWAP inv

1 1 0 1 c c c c 0 0 R 0 0 0 0 0 D SWAP SWAP OVER alu-op

1 1 0 1 1 1 1 i 1 0 R 0 0 0 0 0 D SWAP DROP inv

1 1 0 1 c c c c 1 0 R 0 0 0 0 0 D SWAP alu-op

TABLE 16. MEMORY ACCESS INSTRUCTIONS

INSTRUCTION CODE OPERATION

(1ST CYCLE) (2ND CYCLE)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 s 0 0 0 i 0 0 R 0 0 0 0 0 m-read SWAP inv

1 1 1 s 1 1 1 i 0 0 R 0 0 0 0 0 m-read SWAP SWAP inv

1 1 1 s c c c c 0 0 R 0 0 0 0 0 m-read SWAP SWAP OVER alu-op

1 1 1 s 0 0 0 p 0 1 R 0 0 0 0 0 (SWAP DROP) DUP
m-read SWAP

NOP

1 1 1 s 1 1 1 p 0 1 R d d d d d (SWAP DROP) m-read d NOP

1 1 1 s a a a p 0 1 R d d d d d (SWAP DROP) DUP m-read
SWAP d SWAP alu-op

NOP

1 1 1 s 0 0 0 i 1 0 R 0 0 0 0 0 OVER SWAP m-write inv

1 1 1 s 1 1 1 i 1 0 R 0 0 0 0 0 OVER SWAP m-write DROP inv

1 1 1 s c c c c 1 0 R 0 0 0 0 0 m-read SWAP alu-op

1 1 1 s 0 0 0 p 1 1 R 0 0 0 0 0 (OVER SWAP) SWAP
OVER m-write

NOP

1 1 1 s 1 1 1 p 1 1 R d d d d d (OVER SWAP) m-write d NOP

1 1 1 s a a a p 1 1 R d d d d d (OVER SWAP) SWAP OVER
m-write d SWAP alu-op

NOP

If (p = 0), perform either
(SWAP DROP) or (OVER SWAP)

If s = 0, Memory is accessed by word
If s = 1, Memory is accessed by byte

NOTE: SWAP d SWAP ≡ d ROT

HS-RTX2010RH

33

TABLE 17. USER SPACE INSTRUCTIONS

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 (1ST CYCLE) (2ND CYCLE)

1 1 0 0 0 0 0 i 0 0 R u u u u u u-read SWAP inv

1 1 0 0 1 1 1 i 0 0 R u u u u u u-read SWAP SWAP inv

1 1 0 0 c c c c 0 0 R u u u u u u-read SWAP SWAP OVER alu-op

1 1 0 0 0 0 0 i 1 0 R u u u u u DUP u-write inv

1 1 0 0 1 1 1 i 1 0 R u u u u u DUP u-write DROP inv

1 1 0 0 c c c c 1 0 R u u u u u u-read SWAP alu-op

TABLE 18. ALU FUNCTION INSTRUCTIONS

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 i 0 0 R 0 s s s s inv shift

1 0 1 0 1 1 1 i 0 0 R 0 s s s s DROP DUP inv shift

1 0 1 0 c c c c 0 0 R 0 s s s s OVER SWAP alu-op shift

1 0 1 0 0 0 0 i 0 1 R 0 s s s s SWAP DROP inv shift

1 0 1 0 1 1 1 i 0 1 R 0 s s s s DROP inv shift

1 0 1 0 c c c c 0 1 R 0 s s s s alu-op shift

1 0 1 0 0 0 0 i 1 0 R 0 s s s s SWAP DROP DUP inv shift

1 0 1 0 1 1 1 i 1 0 R 0 s s s s SWAP inv shift

1 0 1 0 c c c c 1 0 R 0 s s s s SWAP OVER alu-op shift

1 0 1 0 0 0 0 i 1 1 R 0 s s s s DUP inv shift

1 0 1 0 1 1 1 i 1 1 R 0 s s s s OVER inv shift

1 0 1 0 c c c c 1 1 R 0 s s s s OVER OVER alu-op shift

TABLE 19. STEP MATH FUNCTIONS (NOTE 25)

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 - - - - - - - 1 - - - - (See the Programmer’s Reference Manual)

NOTE:

25. These instructions perform multi-step math functions such as multiplication, division and square root functions. Use of either the Streamed
instruction mode or masking of interrupts is recommended to avoid erroneous results when performing Step Math operations.

Unsigned Division:
Load dividend into and
Load divisor into
Execute single step form of D2 (Note 25) instruction 1 time
Execute opcode A41A 1 time
Execute opcode A45A 14 times
Execute opcode A458 1 time

The quotient is in , the remainder in

Square Root Operations:
Load value into and
Load 8000H into
Load 0 into
Execute single step form of D2 (Note 25) instruction 1 time
Execute opcode A51A 1 time
Execute opcode A55A 14 times
Execute opcode A558 1 time

The root is in , the remainder in

TOP NEXT
MD

NEXT TOP

TOP NEXT
SR

MD

NEXT TOP

HS-RTX2010RH

34

TABLE 20. ALU LOGIC FUNCTIONS/OPCODES

cccc aaa FUNCTION

0010 001 AND

0011 NOR

0100 010 SWAP-

0101 SWAP-c With Borrow

0110 011 OR

0111 NAND

1000 100 +

1001 +c With Carry

1010 101 XOR

1011 XNOR

1100 110 -

1101 -c With Borrow

TABLE 21. SHIFT FUNCTIONS

SHIFT ssss NAME FUNCTION
STATUS

OF C

 REGISTER REGISTER

T15 Tn T0 N15 Nn N0

0000 No Shift CY Z15 Zn Z0 TN15 TNn TN0

0001 0< Sign Extend CY Z15 Z15 Z15 TN15 TNn TN0

0010 2* Arithmetic Left Shift Z15 Z14 Zn-1 0 TN15 TNn TN0

0011 2*c Rotate Left Z15 Z14 Zn-1 CY TN15 TNn TN0

0100 cU2/ Right Shift Out of Carry 0 CY Zn+1 Z1 TN15 TNn TN0

0101 c2/ Rotate Right Through Carry Z0 CY Zn+1 Z1 TN15 TNn TN0

0110 U2/ Logical Right Shift 0 0 Zn+1 Z1 TN15 TNn TN0

0111 2/ Arithmetic Right Shift Z15 Z15 Zn+1 Z1 TN15 TNn TN0

1000 N2* Left Shift of CY Z15 Zn Z0 TN14 TNn-1 0

1001 N2*c Rotate Left CY Z15 Zn Z0 TN14 TNn-1 CY

1010 D2* 32-Bit Left Shift Z15 Z14 Zn-1 TN15 TN14 TNn-1 0

1011 D2*c 32-Bit Rotate Left Z15 Z14 Zn-1 TN15 TN14 TNn-1 CY

1100 cUD2/ 32-Bit Right Shift Out of Carry 0 CY Zn+1 Z1 Z0 TNn+1 TN1

1101 (Note) cD2/ 32-Bit Rotate Right Through Carry TN0 CY Zn+1 Z1 Z0 TNn+1 TN1

1110 UD2/ 32-Bit Logical Right Shift 0 0 Zn+1 Z1 Z0 TNn+1 TN1

1111 D2/ 32-Bit Right Shift Z15 Z15 Zn+1 Z1 Z0 TNn+1 TN1

NOTE: See the Programmer’s Reference Manual.

Where: T15-Most significant bit of
Tn-Typical bit of
T0-Least significant bit of
N15-Most significant bit of
Nn-Typical bit of
N0-Least significant bit of

C-Carry bit
CY-Carry bit before operation
Zn-ALU output
Z15-Most significant bit 15 of ALU output
TNn-Original value of typical bit of

TOP NEXT

NEXT

NEXT

TOP
TOP

TOP
NEXT

NEXT
NEXT

NEXT

HS-RTX2010RH

35

TABLE 22. MAC/BARREL SHIFTER/LZD INSTRUCTIONS

INSTRUCTION CODE OPERATION

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 0 R 0 1 0 0 0 Forth 0 =

1 0 1 1 0 0 0 0 0 0 R 0 1 0 0 1 Double Shift Right Arithmetic

1 0 1 1 0 0 0 0 0 0 R 0 1 0 1 0 Double Shift Right Logical

1 0 1 1 0 0 0 0 0 0 R 0 1 1 0 0 Clear MAC Accumulator

1 0 1 1 0 0 0 0 0 0 R 0 1 1 1 0 Double Shift Left Logical

1 0 1 1 0 0 0 0 0 0 R 0 1 1 1 1 Floating Point Normalize

1 0 1 1 0 0 0 0 0 0 R 1 0 0 0 1 Shift MAC Output Regs Right

1 0 1 1 0 0 0 0 0 0 R 1 0 0 1 0 Streamed MAC Between Stack and Memory

1 0 1 1 0 0 0 0 1 0 R 1 0 0 1 0 Streamed MAC Between ASIC Bus and Memory

1 0 1 1 0 0 0 0 0 0 R 1 0 0 1 1 Mixed Mode Multiply

1 0 1 1 0 0 0 0 1 0 R 1 0 1 1 0 Unsigned Multiply

1 0 1 1 0 0 0 0 1 0 R 1 0 1 1 1 Signed Multiply

1 0 1 1 0 0 0 0 0 0 R 1 0 1 0 0 Signed Multiply and Subtract from Accumulator

1 0 1 1 0 0 0 0 0 0 R 1 0 1 0 1 Mixed Mode Multiply Accumulate

1 0 1 1 0 0 0 0 0 0 R 1 0 1 1 0 Unsigned Multiply Accumulate

1 0 1 1 0 0 0 0 0 0 R 1 0 1 1 1 Signed Multiply Accumulate

1 0 1 1 1 1 1 0 0 0 R 1 0 0 1 0 Load MXR Register

1 0 1 1 1 1 1 0 0 0 R 1 0 1 1 0 Load MLR Register

1 0 1 1 1 1 1 0 0 0 R 1 0 1 1 1 Load MHR Register

1 0 1 1 1 1 1 0 1 0 R 1 0 0 1 0 Store MXR Register

1 0 1 1 1 1 1 0 1 0 R 1 0 1 1 0 Store MLR Register

1 0 1 1 1 1 1 0 1 0 R 1 0 1 1 1 Store MHR Register

HS-RTX2010RH

36

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Die Characteristics

DIE DIMENSIONS:

364 mils x 371 mils x 21 mils ±1mil

INTERFACE MATERIALS:

Glassivation:

Type: SiO2
Thickness: 8kÅ ±1kÅ

Top Metallization:

Type: Al/Si/Cu
Thickness: 7.5kÅ ±2kÅ

Substrate:

TSOS5 CMOS,
Silicon on Sapphire

Backside Finish:

Silicon

ASSEMBLY RELATED INFORMATION:

Substrate Potential:

Unbiased (SOS)

ADDITIONAL INFORMATION:

Worst Case Current Density:

1.0 x 105 A/cm2

Metallization Mask Layout HS-RTX2010RH

M
A

16
 (5

3)

M
A

15
 (5

2)

M
A

14
 (5

1)

V
C

C
 (5

0)

M
A

13
 (4

9)

M
A

12
 (4

8)

M
A

11
 (4

7)

M
A

10
 (4

6)

M
A

09
 (4

5)

G
N

D
 (4

4)

M
A

08
 (4

3)

M
A

07
 (4

2)

M
A

06
 (4

1)

M
A

05
 (4

0)

M
A

04
 (3

9)

M
A

03
 (3

8)

M
A

02
 (3

7)

M
A

01
 (3

6)

G
D

00
 (3

5)

G
D

01
 (3

4)

G
D

02
 (3

3)

GND (32)

GD03 (31)

GD04 (30)

GD05 (29)

GD06 (28)

VCC (27)

GD07 (26)

GD08 (25)

GD09 (24)

GD10 (23)

GD11 (22)

GD12 (21)

GND (20)

GD13 (19)

GD14 (18)

GD15 (17)

GIO (16)

GR/W (15)

ICLK (14)

WAIT (13)

RESET (12)

(1
1)

 E
I5

(1
0)

 E
I4

(9
) E

I3

(8
) E

I2

(7
) E

I1

(6
) V

C
C

(5
) I

N
TS

U
P

(4
) N

M
I

(3
) I

N
TA

(2
) T

C
LK

(C
Q

FP
 P

IN
 1

) G
A

02

(8
4)

 G
A

01

(8
3)

 G
A

00

(8
2)

 M
D

15

(8
1)

 G
N

D

(8
0)

 M
D

14

(7
9)

 M
D

13

(7
8)

 M
D

12

(7
7)

 M
D

11

(7
6)

 M
D

10

(7
5)

 M
D

09

(74) MD08

(73) VCC

(72) MD07

(71) MD06

(70) MD05

(69) GND

(68) MD04

(67) MD03

(66) MD02

(65) MD01

(64) MD00

(63) MR/W

(62) PCLK

(61) BOOT

(60) NEW

(59) UDS

(58) LDS

(57) GND

(56) MA19

(55) MA18

(54) MA17

HS-RTX2010RH

