

Introduction

The Supertex HV257DB1 is a 32-Channel 295V sample and hold amplifier array with a nominal gain of 72V/V. The purpose of the HV257DB1 is to provide a means to easily evaluate the Supertex HV257FG device. A high voltage supply, V_{PP} , and two low voltage supplies, V_{DD} and V_{NN} , are required. These connections can be made via the J1 header provided on the top of the demo board. Connections to the logic control inputs and V_{SIG} analog signal are on the bottom of the demo board. There are 32 pads on the right side of the board for the outputs. Please follow the power up/down sequence to avoid damaging the device.

Specifications

V _{PP} , High voltage supply	300V
V _{DD} , Low voltage positive supply	6.0V to 7.5V
V _{NN} , Low voltage negative supply	-4.5V to -6.5V
V _{SIG} , Input signal range	0V to 5.0V
HV _{OUT} , Output voltage swing	0V to 295V
Av, Closed loop gain	72V/V ±5%
SR, Output slew rate into 100pF load	2.0V/µs

Power Up/Down Sequence

The device can be damaged due to improper power up/down sequence. To prevent damage, please follow the acceptable power up/down sequences. Two external diodes, D1 and D2, are added in the demo board to prevent damage during power Up/Down. The first diode is a high voltage diode across V_{PP} and V_{DD} . Any low current high voltage diode can be used. The second diode can be any low voltage schottky diode across V_{NN} and Gnd.

Acceptable Power Up Sequences

1) V _{PP}	2) V _{NN}	3) V _{DD}	4) Inputs
1) V _{DD}	2) V _{NN}	3) V _{PP}	4) Inputs

Acceptable Power Down Sequences

1) Inputs	2) V _{PP}	3) V _{DD}	4) V _{NN}
1) Inputs	2) V_{DD}	3) V _{NN}	4) V _{PP}

Inputs and Outputs

The output of the HV257FG will swing from 0V to 295V. The internal closed loop gain is set at 72V/V. An input voltage of 4.096V will give an output of 295V. Input voltages of up to 5V can be applied but will cause the amplifier to saturate. When EN is high, the addressed output, determined by A0 to A4, will be sampling the input signal V_{SIG} . When EN is low, all the internal sampling switches are open.

The output current source and sink for all 32 channels can be adjusted using R1 and R2. The limit is approximately 12.5V divided by the resistor value. The demo board uses 24.9Kohm for \pm 500uA limiting.

Temperature Diode

The HV257FG has an integrated silicon diode to help monitor the die temperature if desired. Pin 37 is the anode and pin 36 is the cathode. Pads are available on the board for these connections.

April 17, 2003

Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Lega/Disclaimer page on the Supertex website.

High Voltage Amplifier Array HV257DB1

HV257DB1 Circuit Diagram

Bill of Material

				1	
	Description	Value	Package	Manuf.	Part Number
C1	X7R chip capacitor	25V, 0.1µF±10%	0805	Tecate	CMC-025104KX0805T
C2	X7R chip capacitor	25V, 0.1µF±10%	0805	Tecate	CMC-025104KX0805T
C3	X7R chip capacitor	500V, 0.01µF±10%	0805	Tecate	CMC-500103KX0805T
C4	X7R chip capacitor	25V, 0.1µF±10%	0805	Tecate	CMC-025104KX0805T
C5	X7R chip capacitor	25V, 0.1µF±10%	0805	Tecate	CMC-025104KX0805T
C6	X7R chip capacitor	25V, 0.1µF±10%	0805	Tecate	CMC-025104KX0805T
R1	Chip resistor	24.9Kohm, ±1%	0805	Any	
R2	Chip resistor	24.9Kohm, ±1%	0805	Any	
D1	Rectifier diode	400V, 1.0A	SMA	Diodes Inc	US1G
D2	Schottky diode	20V, 20mA	SOD-323	Diodes Inc	SD103CWS
U1	Amplifier array	300V	100 MQFP	Supertex	HV257FG
J1	Right Angle 4-pin header	0.100", tin plating		Molex	22-05-3041
J2	Straight 7-pin header	0.100", tin plating		Molex	22-03-2071

April 17, 2003

2