32-Channel 256 Gray-Shade High Voltage Driver

Ordering Information

	Package Option					
Device	64-Lead 3-Sided Plastic Gullwing	Die				
HV62208	HV62208PG	HV62208X				

Features

- □ HVCMOS[®] technology
- □ 5V CMOS inputs
- Up to 80V output voltage
- PWM gray shade conversion
- Capable of 256 levels of gray shading
- Balanced shift clock complies with RS-422
- 8MHz shift and count clock frequency
- 16MHz data throughput rate
- 8 bit data bus
- 32 outputs per device
- BLANK function

Absolute Maximum Ratings

Supply voltage, V _{DD}	-0.5V to +7.5V
Supply voltage, V _{PP}	-0.5V to +80V
Supply voltage, V _{NN}	-15V to 0V
Logic input levels	-0.5 to V _{DD} + 0.5V
Continuous total power dissipation	1.2W
Operating temperature range	-40°C to +85°C
Storage temperature range	-65°C to +150°C

Notes:

All voltages are referenced to GND.

Maximum V_{PP} to V_{NN} voltage is 90V.

For operation above 25°C ambient derate linearly to 85°C at 20mW/°C.

General Description

Not recommended for new designs. Please use HV632 instead.

The HV622 is a 32-channel gray-shade column driver IC designed for driving electrofluorescent displays. Using Supertex's unique HVCMOS[®] technology, it is capable of 256 levels of gray shading by PWM conversion.

The shift clock is a balanced clock with electrical characteristics complying with EIA RS-422 standard. Input data, in groups of eight, is latched into a set of data latches on both edges of the shift clock. The data shifted in the first data latch corresponds to HV_{OUT} 1, the second data latch corresponds to HV_{OUT} 2, and so on. These data are compared to the contents of the master binary counter which counts on both edges of the count clock. Each time the master counter begins to decrement from 1111 1111, the data in the data latches are compared with the contents of the counter; if they match, the corresponding outputs will go high. The master counter counts down to 0000 0001 and then starts to count up again. The outputs that are at high will stay at high until the contents of the counter match the data in the data latches again. Therefore, the higher the binary data in the data latches, the longer the outputs will stay at high. Thus, different high voltage pulse widths are produced. When the counter reaches its 1111 1111 count while counting up, the device is ready for the next operation cycle. A data value of 0000 0000 produces no pulse; the output stays low.

The BLANK input signal will reset the master counter to all ones (1111 1111) and set all high voltage outputs to low.

02/96/022

Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Legal/Disclaimer page on the Supertex website.

Electrical Characteristics

(Over recommended conditions of $V_{DD} = 5V$, $V_{PP} = 70V$, $V_{NN} = -10V$, $T_A = 25^{\circ}C$ unless otherwise noted)

Low-Voltage DC Characteristics (Digital)

Symbol	Parameter	Min	Max	Units	Conditions
V _{DD}	Low-voltage digital supply voltage	4.5	5.5	V	
I _{DD}	V _{DD} supply current		25	mA	$f_{SC} = 8MHz$, $f_{CC} = 8MHz$
I _{DDQ}	Quiescent V _{DD} supply current		100	μA	All V_{IN} = GND, Count Clock = V_{DD}
I _{IH}	High-level input current		10	μA	$V_{IN} = V_{DD}$
I _{IL}	Low-level input current		-10	μA	V _{IL} = GND
I _{он}	High-level output current	-1.0		mA	
I _{OL}	Low-level ouptut current	1.0		mA	

Low-Voltage DC Characteristics (Analog)

Symbol	Parameter		Max	Units	Conditions
V _{DD}	Low-voltage analog supply voltage	4.5	5.5	V	
I _{DD}	V _{DD} supply current		100	μA	$f_{SC} = 8MHz, f_{CC} = 8MHz$
I _{DDQ}	Quiescent V_{DD} supply current		100	μA	All $V_{IN} = GND$, Count Clock = V_{DD}

High-Voltage DC Characteristics

Symbol	Parameter		Max	Units	Conditions
I _{PPQ}	Quiescent V _{PP} supply current		100	μA	All HV _{OUT} low or high
I _{OUT(p)}	P-channel output current	-4.0		mA	
I _{OUT(n)}	N-channel output current	4.0		mA	

AC Characteristics

Symbol	Parameter	Min	Max	Units	Conditions
f _{SC}	Shift clock frequency		8.0	MHz	
f _{CC}	Count clock frequency		8.0	MHz	
f _{DIN}	Data In frequency		16	MHz	
t _{CW}	Chip select pulse width	80		ns	
t _{CSS}	Chip select to shift clock set-up time	15		ns	
t _{CSH}	Chip select to shift clock hold time	45		ns	
t _{SCC}	Shift clock cycle time	125		ns	
t _{DSS}	Data to shift clock set-up time	10		ns	
t _{DSH}	Data to shift clock hold time	52		ns	
t _{DW}	Data In pulse width	62		ns	
t _{LCW}	Load count pulse width	75		ns	
t _{CCW}	Count clock pulse width	62.5		ns	
t _{ccc}	Count clock cycle time	125		ns	
t _{LCD}	Load count to count clock delay	100		ns	
t _{CCD}	Count clock to HV _{OUT} turn-on/turn-off		600	ns	$C_L = 15 pF$
t _{BLW}	BLANK pulse width	700		ns	
t _{BLD}	BLANK to HV _{OUT} delay		500	ns	$C_L = 15pF$
t _{CDD}	Count clock delay between count down and count up cycles	500		ns	

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units	Conditions
V _{DD}	Logic supply voltage	4.5	5.5	V	
V _{PP}	Positive high-voltage supply	12	70	V	
V _{NN}	Negative high-voltage supply	-8	-10	V	
V _{IL}	Low-level input voltage	0	1	V	
V _{IH}	High-level input voltage	V _{DD} -1	V _{DD}	V	
f _{SC}	Shift clock frequency		8	MHz	
f _{cc}	Count clock frequency		8	MHz	
T _A	Operating temperature	-40	+85	°C	

Pin Definitions

Pin #	Name	I/O	Function
27-30 36-29	D1 – D8	I	Inputs for binary-format parallel data (D8 is the most significant bit)
34	Shift Clock	Ι	Triggers data on both edges
35	Shift Clock	Ι	Triggers data on both edges
31	Count Clock	Ι	Input to the counter
24	CSI	Ι	Chip select input to enable the device to accept data
25	CSO	0	Chip select output to enable the next device
33	Load Count	I	Input to initiate the counting
26	Blank	I	Input to reset the counter and HV _{OUT}
4-19 46-61	HV _{OUT} 1 – HV _{OUT} 32	0	High-voltage outputs
23,43	V _{PP}	_	Positive high-voltage supply
41	V _{DD} (Analog)	_	Low-voltage analog supply voltage
40	V _{DD} (Digital)		Low-voltage digital supply voltage
22,44	V _{NN}	—	Negative high-voltage supply
20-21	GND (Digital)	_	Digital ground
42	GND (Analog)		Analog ground

Input and Output Equivalent Circuits

Functional Block Diagram

Timing Diagrams

Timing Diagrams

Pin Configurations

Pin	Function	Pin	Function
1	N/C	33	Load Count
2	N/C	34	Shift Clock
3	N/C	35	Shift Clock
4	ΗV _{ουτ} 17	36	D5
5	HV _{out} 18	37	D6
6	HV _{out} 19	38	D7
7	HV _{out} 20	39	D8
8	HV _{out} 21	40	V _{DD} (Digital)
9	HV _{out} 22	41	V _{DD} (Analog)
10	HV _{out} 23	42	GND (Analog)
11	HV _{out} 24	43	V _{PP}
12	HV _{out} 25	44	V _{NN}
13	HV _{out} 26	45	N/C
14	HV _{out} 27	46	HV _{out} 1
15	HV _{out} 28	47	HV _{out} 2
16	HV _{out} 29	48	HV _{out} 3
17	HV _{out} 30	49	HV _{out} 4
18	HV _{out} 31	50	HV _{out} 5
19	HV _{out} 32	51	HV _{out} 6
20	GND (Digital)	52	HV _{out} 7
21	GND (Digital)	53	HV _{out} 8
22	V _{NN}	54	HV _{out} 9
23	V _{PP}	55	HV _{out} 10
24	CSI	56	HV _{out} 11
25	CSO	57	HV _{out} 12
26	Blank	58	HV _{out} 13
27	D1	59	HV _{out} 14
28	D2	60	HV _{out} 15
29	D3	61	HV _{out} 16
30	D4	62	N/C
31	Count Clock	63	N/C
32	N/C	64	N/C

Package Outline

3-sided Plastic 64-pin Gullwing Package

Supertex inc.

02/06//02

©2002 Supertex Inc. All rights reserved. Unauthorized use or reproduction prohibited.