10-Channel Serial-Input Latched Display Driver

Ordering Information

	Package Options					
Device	18-Pin Plastic DIP	20-Pin Small Outline Package	20-Pin Plastic Chip Carrier	Die		
HV6810	HV6810P	HV6810WG	HV6810PJ	HV6810X		

*For Hi-Rel process flow, refer to page 5-3 of the Databook.

Features

- □ High output voltage 80V
- □ High speed 5MHz @ 5V_{DD}
- □ Low power $I_{BB} \le 0.1 \text{mA}$ (All high)
- □ Active pull down 100µA min
- Output source current 100mA at 60V V_{PP}
- Each device drives 10 lines
- □ High-speed serially-shifted data input
- 5V CMOS-compatible inputs
- Latches on all driver outputs
- Pin-compatible improved replacement for UCN5810A and TL4810A, TL4810B

General Description

The HV6810 is a monolithic integrated circuit designed to drive a dot matrix or segmented vacuum fluorescent display (VFD). These devices feature a serial data output to cascade additional devices for large displays.

A 10-bit data word is serially loaded into the shift register on the positive-going transition of the clock. Parallel data is transferred to the output buffers through a 10-bit D-type latch while the latch enable input is high and is latched when the latch enable is low. When the blanking input is high, all outputs are low.

Outputs are structures formed by double-diffused MOS (DMOS) transistors with output voltage ratings of 80 volts and 25 milliampere source-current capability. All inputs are compatible with CMOS levels.

Absolute Maximum Ratings¹

Logic supply voltage, V_{DD}^2		7.5V
Driver supply voltage, V _{BB} ²		90V
Output voltage ²		90V
Input voltage ²	-0.3V to \	/ _{DD} + 0.3V
Continuous total power dissipation at 25°C free-air temperature ³	18-Pin P-DIP ³ 20-Pin SOIC ⁴ 20-Pin PLCC ⁴	900mW 1000mW 1000mW
Operating Temperature Range	-40°	to +85*C

Notes:

1. Over operating free-air temperature.

2. All voltages are referenced to $\mathsf{V}_{\mathsf{SS}}.$

3. For operation above 25°C ambient derate linearly to 85°C at 15mW/°C.

4. For operation above 25°C ambient derate linearly to 85°C at 16.7mW/°C.

01/06/03

Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Legal/Disclaimer page on the Supertex website.

Electrical Characteristics

Symbol	Parameter		Min	Тур	Мах	Units	Conditions
V _{OH}	High-level output voltage	Q outputs	57.5	58		V	I _{OH} = 25mA
		Serial output	4	4.5		V	V _{DD} = 4.5V, I _{OH} = -100μA
V _{OL}	Low-level output voltage	Q outputs		0.15	1	V	I_{OH} = 100µA, Blanking input at V_{DD}
		Serial output		0.05	0.1	V	$V_{DD} = 4.5V, I_{OL} = 100 \mu A$
I _{OL}	Low-level Q output current (p	ull-down current)	60	80		μΑ	$T_A = Max, V_{OL} = 0.7V$
I _{O(OFF)}	Off-state output current			-1	-15	μΑ	$V_{O} = 0$, Blanking input $T_{A} = Max$ at V_{DD}
I _H	High-level input current				1	μΑ	$V_1 = V_{DD}$
I _{DD}	Supply current from V_{DD} (stat	ndby)		10	50	μA	All inputs at 0V, one Q output high
				10	50	μΑ	All inputs at 0V, all Q outputs low
I _{BB}	Supply current from V_{BB}			0.05	0.1	mA	All outputs low, all Q outputs open
				0.05	0.1	mA	All outputs high, all Q outputs open

* All typical values are at $T_A = 25^{\circ}C$, except for I_O .

AC Characteristics (Timing requirements over recommended operating conditions)

Symbol	Parameter	Min	Тур	Max	Units	Conditions
t _{W(CKH)}	Pulse duration, clock high	100			ns	
t _{W(LEH)}	Pulse duration, latch enable high	100			ns	
t _{SU(D)}	Setup time, data before clock	50			ns	
t _{H(D)}	Hold time, data after clock	50			ns	
t _{CKH-LEH}	Delay time, clock to latch enable high	50			ns	
t _{pd} *	Propagation delay time, latch enable to output		0.3		μS	

* Switching characteristics, $V_{BB} = 60V$, $T_A = 25^{\circ}C$.

Recommended Operating Conditions

Symbol	Parameter			Nom	Max	Units
V _{DD}	Supply voltage	Supply voltage			5.5	V
V _{BB}	Supply voltage				80	V
V _{SS}	Supply voltage			0		V
V _{IH}	High-level input voltage (for $V_{DD} = 5V$)	High-level input voltage (for V _{DD} = 5V)			5.3	V
V _{IL}	Low-level input voltage		-0.3		0.8	V
I _{он}	Continuous high-level Q output current	-25			mA	
f _{CLK}	Clock frequency			5	MHz	
T _A	Operating free-air temperature	Plastic	-40		+85	°C

Note:

Power-up sequence should be the following:

Connect ground V_{SS}

2. Apply V_{DD}.

3. Set all inputs (Data, CLK, Enable, etc.) to a known state.

4. Apply V_{BB}.

5. The V_{BB} should not drop below V_{DD} or float during operation.

Power-down sequence should be the reverse of the above.

Input and Output Equivalent Circuits

Timing Diagram

Functional Block Diagram

Logic Diagram (positive logic)

Function Table

Serial Data	Clock	Shift Register Contents	Serial Data	Strobe	Latch Contents	Blanking	Output Contents
Input	Input	$\mathbf{I}_1 \ \mathbf{I}_2 \ \mathbf{I}_3 \ \dots \ \mathbf{I}_{N-1} \ \mathbf{I}_N$	Output	Innut	$\mathbf{I}_1 \ \mathbf{I}_2 \ \mathbf{I}_3 \ \dots \ \mathbf{I}_{N-1} \ \mathbf{I}_N$	Input	$\mathbf{I}_1 \ \mathbf{I}_2 \ \mathbf{I}_3 \ \dots \ \mathbf{I}_{N-1} \ \mathbf{I}_N$
Н		H $R_1 R_2 R_{N-2} R_{N-1}$	R _{N-1}				
L		L R ₁ R ₂ R _{N-2} R _{N-1}	R _{N-1}				
Х		$R_1 R_2 R_3 \dots R_{N-1} R_N$	R _N				
		X X X X X	Х	L	$R_1 R_2 R_3 \dots R_{N-1} R_N$		
		$P_1 P_2 P_3 \dots P_{N-1} P_N$	P _N	Н	$P_1 P_2 P_3 \dots P_{N-1} P_N$	L	$P_1 P_2 P_3 \dots P_{N-1} P_N$
					X X X X X	Н	LLLLL

L = Low logic level

H = High logic level

X = Irrelevant

P = Present state

R = Previous state

Switching Waveforms

Output Switching Times

Pin Configurations

Package Outlines

HV6810	
18-Pin DIP	

8-PIN DIP						
	Pin	Function	Pin	Function		
	1	Q8	10	Q3		
	2	Q7	11	Q2		
	3	Q6	12	Q1		
	4	Clock	13	Blanking		
	5	V _{SS}	14	Data in		
	6	V _{DD}	15	V _{BB}		
	7	LE (strobe)	16	Serial data out		
	8	Q5	17	Q10		
	9	Q4	18	Q9		

1	\bigcirc	18
2		17
3		16
4		15
5		14
6		13
7		12
8		11
9		10

top view 18-pin DIP

top view SOW-20

HV6810 20-Pin SOW

Pin	Function	Pin	Function
1	Q8	11	Q3
2	Q7	12	Q2
3	Q6	13	Q1
4	Clock	14	Blanking
5	V _{SS}	15	Data in
6	N/C	16	V _{BB}
7	V _{DD}	17	Serial data out
8	LE (strobe)	18	N/C
9	Q5	19	Q10
10	Q4	20	Q9

HV6810

20-Pin Plastic PLCC

Pin	Function	Pin	Function
1	Q8	11	Q3
2	Q7	12	Q2
3	Q6	13	Q1
4	Clock	14	Blanking
5	N/C	15	Data In
6	V _{SS}	16	N/C
7	V _{DD}	17	V _{BB}
8	LE(Strobe)	18	Serial data out
9	Q5	19	Q10
10	Q4	20	Q9

Supertex inc.

©2003 Supertex Inc. All rights reserved. Unauthorized use or reproduction prohibited.