Features

- ٠ Pin-for-Pin Second Source
- 1pA Typical Bias Current—4nA (max) at +125°C
- ±1V to ±8V Wide Supply Voltage Range
- Industry-Standard Pinouts

ICL76XX

- Programmable Quiescent Currents of 10µA, 100µA, and 1000µA
- Monolithic, Low-Power CMOS Design

М

Vos

SELECTION

A = 2mV

General Description

The ICL761X-ICL764X family of monolithic CMOS op amps combine ultra-low input current with low-power operation over a wide supply voltage range. With pinselectable quiescent currents of 10µA, 100µA, or 1000µA per amplifier, these op amps will operate from $\pm 1V$ to $\pm 8V$ power supplies, or from single supplies from 2V to 16V. The CMOS outputs swing to within millivolts of the supply voltages.

The ultra-low bias current of 1pA makes this family of op amps ideal for long time constant integrators, picoammeters, low droop rate sample/hold amplifiers and other applications where input bias and offset currents are critical. A low noise current of $0.01 pA\sqrt{Hz}$ and an input impedance of $10^{12}\Omega$ ensure optimum performance with very high source impedances in such applications as pH meters and photodiode amplifiers.

Applications

Battery-Powered Instruments Low-Leakage Amplifiers Long-Time Constant Integrators Low-Frequency Active Filters Hearing Aids and Microphone Amplifiers Low Droop Rate Sample/Hold Amplifiers Picoammeters

Pin Configuration

	70°C	99	
B = 5mV	E = -40°C to +85°C	PA = 8-Pin Plastic Dip	
C = 10mV	M = -55°C to +125°C	SA = 8-Pin Small SO	
D = 15mV		JD = 14-Pin CERDIP	
E = 20mV		PD = 14-Pin Plastic Dip	
		SD = 14-Pin Small SO	
		JE = 16-Pin CERDIP	
		PE = 16-Pin Plastic Dip	
		SE = 16-Pin Small SO	

Typical Operating Circuit appears at end of data sheet.

CL761X-ICL764X

Ordering Information

OP

PKG CODE

TV= 8-Pin TO-

Ν

TEMP

RANGE

 $C = 0^{\circ}C$ to

7000

Maxim Integrated Products 1

WE - 16-Pin Wide SO

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ICL761X-ICL764X

_Ordering Information (continued)

	ICL7611	ICL7612	ICL7614	ICL7616	ICL7621	ICL7622	ICL7631	ICL7632	ICL7641	ICL7642
Compensated	Х	Х		Х	Х	Х	Х		Х	Х
Externally Compensated			Х							
Extended CMVR		Х		Х						
Offset null capability	Х	Х	Х	Х		Х				
Programmable I _Q	Х	Х		Х			Х	Х		
Fixed I _Q -10µA										Х
Fixed I _Q - 100µA			Х		Х	Х				
Fixed I _Q -1mA									Х	

PART	TEMP RANGE	PIN-PACKAGE
ICL761XACPA	0°C to +70°C	8 Plastic Dip
ICL761XACSA	0°C to +70°C	8 Slim SO
ICL761XACTV	0°C to +70°C	TO-99 Metal Can
ICL761XAMTV	-55°C to +125°C	TO-99 Metal Can
ICL761XBCPA	0°C to +70°C	8 Plastic Dip
ICL761XBCSA	0°C to +70°C	8 Slim SO
ICL761XBCTV	0°C to +70°C	TO-99 Metal Can
ICL761XBESA	-40°C to +85°C	8 Slim SO
ICL761XBMTV	-55°C to +125°C	TO-99 Metal Can
ICL761XDCPA	0°C to +70°C	8 Plastic Dip
ICL761XDCSA	0°C to +70°C	8 Slim SO
ICL761XDCTV	0°C to +70°C	TO-99 Metal Can
ICL761XDESA	-40°C to +85°C	8 Slim SO
ICL7621ACPA	0°C to +70°C	8 Plastic Dip
ICL7621ACSA	0°C to +70°C	8 Slim SO
ICL7621ACTV	0°C to +70°C	TO-99 Metal Can
ICL7621AMTV	-55°C to +125°C	TO-99 Metal Can
ICL7621BCPA	0°C to +70°C	8 Plastic Dip

Ordering Information (Single/Dual)

PART	TEMP RANGE	PIN-PACKAGE
ICL7621BCSA	0°C to +70°C	8 Slim SO
ICL7621BCTV	0°C to +70°C	TO-99 Metal Can
ICL7621BMTV	-55°C to +125°C	TO-99 Metal Can
ICL7621DCPA	0°C to +70°C	8 Plastic Dip
ICL7621DCSA	0°C to +70°C	8 Slim SO
ICL7621DCTV	0°C to +70°C	TO-99 Metal Can
ICL7622ACPD	0°C to +70°C	14 Plastic Dip
ICL7622ACSD	0°C to +70°C	14 Slim SO
ICL7622ACJD	0°C to +70°C	14 CERDIP
ICL7622AMJD	-55°C to +125°C	14 CERDIP
ICL7622BCPD	0°C to +70°C	14 Plastic Dip
ICL7622BCSA	0°C to +70°C	14 Slim SO
ICL7622BCJD	0°C to +70°C	14 CERDIP
ICL7622BMJD	-55°C to +125°C	14 CERDIP
ICL7622DCPD	0°C to +70°C	14 Plastic Dip
ICL7622DCSD	0°C to +70°C	14 Slim SO
ICL7622DCJD	0°C to +70°C	14 CERDIP

Note: X above is replaced by: 1, 2, 4, 8.

_Pin Configurations

ABSOLUTE MAXIMUM RATINGS (Single/Dual)

Total Supply Voltage (V+ to V-)+18V
Input Voltage(V+ + 0.3V) to (V 0.3V)
Differential Input Voltage (Note 1) \pm (V+ + 0.3V) to (V 0.3V)
Duration of Output Short Circuit (Note 2)Unlimited
Continuous Power Dissipation ($T_A = +25^{\circ}C$)
TO-99 Metal Can (derate 2mW/°C above +25°C)250mW
8-Pin Minidip (derate 2mW/°C above +25°C)250mW
14-Pin Plastic (derate 3mW/°C above +25°C)375mW
14-Pin CERDIP (derate 4mW/°C above +25°C)500mW
16-Pin Plastic (derate 3mW/°C above +25°C)
16-Pin CERDIP (derate 4mW/°C above +25°C)500mW

Operating Temperature Ranges: M Series	55°C to +125°C
E Series	40°C to +85°C
C Series	0°C to +70°C
Storage Temperature Range	55°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	
Lead(Pb)-Free Packages	
Packages Containing Lead	+240°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1: Long-term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time. **Note 2:** The outputs may be shorted to ground or to either supply for $V_{SUPP} \le 10V$. Care must be taken to insure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS (Single/Dual)

DADAMETED				ICL76XX/	4		ICL76XXB	;	
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
Input Offact Voltage		$ \begin{array}{l} R_{S} \leq 100 k \Omega, \\ T_{A} = +25^\circ C \end{array} $			2			5	mV
Input Offset Voltage	V _{OS}	$\begin{array}{l} R_{S} \leq 100 k \Omega, \\ T_{MIN} \leq T_{A} \leq T_{MAX} \end{array} \end{array} \label{eq:RS}$			3			7	mv
Temperature Coefficient of V _{OS}	$\Delta V_{OS} / \Delta T$	$R_{S} \leq 100 k\Omega$		10			15		µV/°C
Input Offect Current		$T_A = +25^{\circ}C$		0.5	30		0.5	30	~ ^
Input Offset Current	los	$0^{\circ}C \le T_A \le +70^{\circ}C$			300			300	рА
Input Rice Current		$T_A = +25^{\circ}C$		1.0	50		1.0	50	5
Input Bias Current	IBIAS	$0^{\circ}C \le T_A \le +70^{\circ}C$			500			500	рА
Common-Mode Voltage Range (Except ICL7612/ ICL7616)	VCMR		-0.4		+0.6	-0.4		+0.6	V
Extended Common- Mode Voltage Range (ICL7612 Only)	VCMR		-1.1		+0.6	-1.1		+0.6	V
Extended Common- Mode Voltage Range (ICL7616 Only)	V _{CMR}	I _Q = 10μΑ	-1.3		-0.3	-1.3		-0.3	V
		$R_L = 1M\Omega$, $T_A = +25^{\circ}C$		±0.98			±0.98		
Output Voltage Swing	Vout	$ \begin{array}{l} R_{L} = 1M\Omega, \ 0^{\circ}C \leq T_{A} \leq \\ +70^{\circ}C \end{array} \end{array} $		±0.96			±0.96		V

(V_SUPP = $\pm 1.0V$, I_Q = 10µA, T_A = +25°C, unless otherwise noted.)

ELECTRICAL CHARACTERISTICS (Single/Dual) (continued)

(V_{SUPP} = $\pm 1.0V$, I_Q = 10µA, T_A = $\pm 25^{\circ}$ C, unless otherwise noted.)

				ICL76XXA	۱		ICL76XXB			
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS	
Large-Signal Voltage				90			90		-10	
Gain	Avol	$ \begin{split} V_O &= \pm 0.1 V, \ R_L = 1 M \Omega, \\ 0^\circ C &\leq T_A \leq +70^\circ C \end{split} $		80		80			dB	
Unity-Gain Bandwidth	GBW			0.044			0.044		MHz	
Input Resistance	R _{IN}			10 ¹²			10 ¹²		Ω	
Common-Mode Rejection Ratio	CMRR	R_S ≤ 100k $Ω$		80			80		dB	
Power-Supply Rejection Ratio	PSRR	$R_{S} \le 100 k\Omega$		80			80		dB	
Input-Referred Noise Voltage	en	$R_S = 100\Omega$, f = 1kHz		100			100		nV/√Hz	
Input-Referred Noise Current	in	$R_{S} = 100\Omega$, f = 1kHz		0.01			0.01		pA/√Hz	
Supply Current (Per Amplifier)	ISUPP	No signal, no load		6	15		6	15	μA	
Slew Rate	SR	$\label{eq:VOL} \begin{array}{l} A_{\text{VOL}} = 1, \ C_{\text{L}} = 100 \text{pF}, \\ V_{\text{IN}} = 0.2 \text{V}_{\text{P-P}}, \ R_{\text{L}} = 1 \text{M} \Omega \end{array}$		0.016			0.016		V/µs	
Rise Time	tr	$V_{IN} = 50mV, C_L = 100pF,$ $R_L = 1M\Omega$		20			20		μs	
Overshoot Factor		$V_{IN} = 50 \text{mV}, C_L = 100 \text{pF},$ $R_L = 1 \text{M}\Omega$		5			5		%	

ELECTRICAL CHARACTERISTICS (Single/Dual)

	CVMDOL	CONDITIONS	IC	CL76XX	A	10	CL76XX	в	IC	CL76XX	D	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
Input Offset		$\begin{array}{l} R_{S} \leq 100 k\Omega, \\ T_{A} = +25^{\circ}C \end{array}$			2			5			15	
Voltage	Vos	$\begin{array}{l} R_S \leq 100 k\Omega, \\ T_{MIN} \leq T_A \leq T_{MAX} \end{array} \end{array} \label{eq:RS}$			3			7			20	mV
Temperature Coefficient of V _{OS}	$\Delta V_{OS} / \Delta T$	$R_{S} \le 100 k\Omega$		10			15			25		µV/°C
		$T_A = +25^{\circ}C$		0.5	30		0.5	30		0.5	30	
		$\begin{array}{l} C: \ 0^{\circ}C \leq T_A \leq \\ +70^{\circ}C \end{array}$			300			300			300	
Input Offset Current	los	E: $-40^{\circ}C \le T_A \le$ +85°C			800			800			800	рА
		M: -55°C≤ T _A ≤ +125°C			800			800			800	
	·	•										5

ELECTRICAL CHARACTERISTICS (Single/Dual) (continued)

DADAMETED	SYMBOL		IC	L76XX	A	I	CL76XX	В	IC	CL76XX	D	
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
		$T_A = +25^{\circ}C$		1.0	50		1.0	50		1.0	50	
Input Bias Current		C: 0°C ≤ T _A ≤ +70°C			400			400			400	
	IBIAS	E: -40°C ≤ T _A ≤ +85°C			4000			4000			4000	рА
		M: -55°C≤ T _A ≤ +125°C			4000			4000			4000	
		I _Q = 10µA (Note 3)	+4.4			+4.4			+4.4			
Common-Mode		IQ = IOpA (NOLE 3)	-4.0			-4.0			-4.0			
Voltage Range	VCMR	I _Q = 100µA (Note 3)	+4.2			+4.2			+4.2			V
(Except ICL7612/			-4.0			-4.0			-4.0			
ICL7616)		I _Q = 1mA (Note 3)	+3.7			+3.7			+3.7			
			-3.7			-3.7			-3.7			
Extended		I _Q = 10μA ±5.3 ±5.3			±5.3							
Common-Mode	VCMB	I _Q = 100μΑ	+5.3			+5.3 -5.1			+5.3			v
Voltage Range	V CIVIR		-5.1 +5.3			-5.1 +5.3			-5.1 +5.3			v
(ICL7612 Only)		$I_Q = 1mA$	-4.5			+5.3			-4.5			
			-5.3			-5.3			-5.3			
Extended		$I_Q = 10 \mu A$	+3.7			+3.7			+3.5			
Extended Common-Mode			-5.1			-5.1			-5.1			
Voltage Range	VCMR	$I_Q = 100 \mu A$	+3.0			+3.0			+2.7			
(ICL7616 Only)			-4.5			-4.5			-4.5			
		I _Q = 1mA	+2.0			+2.0			+1.7			

ELECTRICAL CHARACTERISTICS (Single/Dual) (continued)

DADAMETER	0/1/201			IC	L76XX	A	IC	CL76XX	в	IC	CL76XX	D	
PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	MIN	TYP	МАХ	MIN	TYP	МАХ	UNITS
			T _A = +25°C	±4.9			±4.9			±4.9			
		IQ = 10μΑ,	C: 0°C ≤ T _A ≤ +70°C	±4.8			±4.8			±4.8			
		$R_{L} = 1M\Omega$ (Note 3)	E: -40°C ≤ T _A ≤ +85°C	±4.7			±4.7			±4.7			
			M: -55°C ≤ T _A ≤ +125°C	±4.7			±4.7			±4.7			
		IQ = 100μΑ, RL = 100kΩ	T _A = +25°C	±4.9			±4.9			±4.9			
			C: 0°C ≤ T _A ≤ +70°C	±4.8			±4.8			±4.8			
Output Voltage Swing	Vout		E: -40°C ≤ T _A ≤ +85°C	±4.5			±4.5			±4.5			V
			M: -55°C ≤ T _A ≤ +125°C	±4.5			±4.5			±4.5			
			T _A = +25°C	±4.5			±4.5			±4.5			
		IQ = 1mA, RL = 10kΩ (Note 3)	C: 0°C ≤ T _A ≤ +70°C	±4.3			±4.3			±4.3			
			E: -40°C ≤ T _A ≤ +85°C	±4.0			±4.0			±4.0			
			M: -55°C ≤ T _A ≤ +125°C	±4.0			±4.0			±4.0			

ELECTRICAL CHARACTERISTICS (Single/Dual) (continued)

	0/4/201	00110		IC	CL76XX	A	I	CL76XX	В	IC	CL76XX	D	
PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
			T _A = +25°C	86	104		80	104		80	104		
		V _O = ±4.0V	C: 0°C ≤ T _A ≤ +70°C	80			75			75			
		RL = 1MΩ, I _Q = 10μΑ	E: -40°C ≤ T _A ≤ +85°C	74			68			68			
			M: -55°C ≤ T _A ≤ +125°C	74			68			68			
			T _A = +25°C	86	102		80	102		80	102		
	Avol	VO = ±4.0V, RL = 100kΩ, IQ = 100μA	C: 0°C \leq T _A \leq +70°C	80			75			75			
Large-Signal Voltage Gain			E: -40°C ≤ T _A ≤ +85°C	74			68			68			dB
			M: -55°C ≤ T _A ≤ +125°C	74			68			68			
			T _A = +25°C	80	83		76	83		76	83		
		VO = ±4.0V, RL =	C: 0°C ≤ T _A ≤ +70°C	76			72			72			
		10kΩ, IQ = 1mA (Note 3)	E: -40°C ≤ T _A ≤ +85°C	72			68			68			
			M: -55°C ≤ T _A ≤ +125°C	72			68			68			

ELECTRICAL CHARACTERISTICS (Single/Dual) (continued)

PARAMETER	0/4/201			ICL76XXA			ICL76XXB			10	CL76XX	D	
PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	MIN	ТҮР	MAX	MIN	TYP	MAX	UNITS
		l _Q = 10μ	A (Note 3)		0.044			0.044			0.044		
Unity-Gain	GBW	I _Q = 100	μA		0.48			0.48			0.48		MHz
Bandwidth		lq = 1m/	A (Note 3)		1.4			1.4			1.4		
Input Resistance	RIN				10 ¹²			10 ¹²			10 ¹²		Ω
		R _S ≤ 100 I _Q = 10µ	kΩ, A (Note 3)	76	96		70	96		70	96		
Common-Mode Rejection Ratio			$R_{S} \le 100 k\Omega,$ $I_{Q} = 100 \mu A$		91		70	91		70	91		dB
		$R_S \le 100$ $I_Q = 1mA$	kΩ, A (Note 3)	66	87		60	87		60	87		
		R _S ≤ 100 I _Q = 10µ	kΩ, A (Note 3)	80	94		80	94		80	94		
Power-Supply Rejection Ratio	PSRR	$R_{\rm S} \le 100$ $I_{\rm Q} = 100$		80	86		80	86		80	86		dB
		$R_S \le 100k\Omega$, $I_Q = 1mA$ (Note 3)		70	77		70	77		70	77		
Input-Referred Noise Voltage	e _n	Rs = 100 1kHz	0Ω, f =		100			100			100		nV/√Hz
Input-Referred Noise Current	in	Rs = 100 1kHz	0Ω, f =		0.01			0.01			0.01		pA/√Hz
		No	I _Q = 10μA (Note 3)		0.01	0.02		0.01	0.02		0.01	0.02	
Supply Current (Per Amplifier)	I _{SUPP}	ISUPP Signal, no load	I _Q = 100μΑ		0.1	0.25		0.1	0.25		0.1	0.25	mA
			I _Q = 1mA (Note 3)		1.0	2.5		1.0	2.5		1.0	2.5	
Channel Separation	V _{O1} / V _{O2}	A _{VOL} = 100			120			120			120		dB

ELECTRICAL CHARACTERISTICS (Single/Dual) (continued)

(V_{SUPP} = \pm 5.0V, T_A = +25°C, unless otherwise noted.)

DADAMETED	0////201	CONDITIONS		IC	L76XX	A	10	CL76XX	В	10	CL76XX	D	
PARAMETER	SYMBOL	CON	DITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
			I _Q = 10μA (Note 3), R _L = 1MΩ		0.016	i		0.016			0.016		
Slew Rate (Note 4)	SR	Avol = 1, CL = 100pF, VIN = 8VP-P	I _Q = 100μΑ, R _L = 100kΩ		0.16			0.16		0.16			V/µs
			I _Q = 1mA (Note 3), R _L = 10kΩ		1.6			1.6			1.6		
	tr	V _{IN} = 50mV, C _L = 100pF	$I_Q = 10\mu A$ (Note 3), $R_L = 1M\Omega$		20			20		20			
Rise Time (Note 4)			$50 \text{mV}, 100 \mu \text{A}, \text{R}_{\text{L}} \\ \text{C}_{\text{L}} = = 100 \text{k} \Omega$		2			2			2		μs
			I _Q = 1mA (Note 3), R _L = 10kΩ	0.9			0.9			0.9			
			$I_Q = 10\mu A$ (Note 3), $R_L = 1M\Omega$		5			5			5		
Overshoot Factor (Note 4)		V _{IN} = 50mV, C _L =	$V_{IN} = I_Q = 100 \mu A, R_L$			10		10		10			%
		100pF	I _Q = 1mA (Note 3), R _L = 10kΩ	nA				40			40		

Note 3: ICL7611, ICL7612, ICL7616 only.

Note 4: ICL7814; 39pF from pin 6 to pin 8.

Ordering Information (Triple/Quad)

PIN-PACKAGE	PART	TEMP RANGE	PIN-PACKAGE
16 Plastic Dip	ICL764XBCPD	0°C to +70°C	14 Plastic Dip
16 Slim SO	ICL764XBCWE	0°C to +70°C	16 Wide SO
16 Plastic Dip	ICL764XCCPD	0°C to +70°C	14 Plastic Dip
16 Slim SO	ICL764XCCWE	0°C to +70°C	16 Wide SO
16 Plastic Dip	ICL764XECPD	0°C to +70°C	14 Plastic Dip
16 Slim SO	ICL764XECWE	0°C to +70°C	16 Wide SO
16 CERDIP	ICL764XBCJD	0°C to +70°C	14 CERDIP
16 CERDIP	ICL764XCCJD	0°C to +70°C	14 CERDIP
16 CERDIP	ICL764XECJD	0°C to +70°C	14 CERDIP
16 CERDIP	ICL764XBMJD	-55°C to +125°C	14 CERDIP
16 CERDIP	ICL764XCMJD	-55°C to +125°C	14 CERDIP

Note: X above is replaced by 1, 2.

PART

ICL763XBCPE

ICL763XBCSE

ICL763XCCPE

ICL763XCCSE

ICL763XECPE

ICL763XECSE

ICL763XBCJE

ICL763XCCJE

ICL763XECJE

ICL763XBMJE

ICL763XCMJE

TEMP RANGE 0°C to +70°C

-55°C to +125°C

-55°C to +125°C

Pin Configurations

ABSOLUTE MAXIMUM RATINGS (Triple/Quad)

Total Supply Voltage (V+ to V-)+18V
Input Voltage(V + + 0.3 V) to (V - 0.3 V)
Differential Input Voltage (Note 5)±I(V+ + 0.3V) - (V 0.3V)
Duration of Output Short Circuit (Note 6)Unlimited
Continuous Power Dissipation ($T_A = +25^{\circ}C$)
TO-99 Metal Can (derate 2mW/°C above +25°C)250mW
8-Pin Minidip (derate 2mW/°C above +25°C)
14 Pin Plastia (dorata $2mW/^{\circ}C$ above $+25^{\circ}C$) 275mW

14-Pin Plastic (d	lerate 3mW/°C above +25°C	J)
14-Pin CERDIP ((derate 4mW/°C above +25	°C)500mW

16-Pin Plastic (derate 3mW/°C above	
16-Pin CERDIP (derate 4mW/°C above	e +25°C)500mW
Operating Temperature Ranges:	
M Series	55°C to +125°C
E Series	40°C to +85°C
C Series	0°C to +70°C
Storage Temperature Range	55°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 5: Long-term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
 Note 6: The outputs may be shorted to ground or to either supply for VSUPP ≤ 10V. Care must be taken to insure that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS (Triple/Quad)

 $(V_{SUPP} = \pm 1.0V, I_Q = 10\mu A, T_A = +25^{\circ}C, unless otherwise noted.)$ (Specifications apply to ICL7631/7632/7642 only.)

DADAMETED	CYMPOL	CONDITIONS		ICL76XXE	3		ICL76XXC	;	
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
Input Offact Valtage	Mag	$ \begin{array}{l} R_{S} \leq 100 k\Omega, \\ T_{A} = +25^{\circ}C \end{array} \end{array} $			5			10	mV
Input Offset Voltage	V _{OS}	$\label{eq:RS} \begin{array}{l} R_S \leq 100 k \Omega, \\ T_{MIN} \leq T_A \leq T_{MAX} \end{array}$			7			12	mv
Temperature Coefficient of V _{OS}	$\Delta V_{OS} / \Delta T$	$R_{S} \le 100 k\Omega$		15			20		µV/°C
Input Offset Current	loo	$T_A = +25^{\circ}C$		0.5	30		0.5	30	рА
Input Onset Current	los	$0^{\circ}C \le T_A \le +70^{\circ}C$			300			300	рА
Input Bias Current	Inua	$T_A = +25^{\circ}C$		1.0	50		1.0	50	рА
Input bias Current	IBIAS	$0^{\circ}C \leq T_A \leq +70^{\circ}C$			500			500	рА
Common-Mode Voltage Range	VCMR		-0.4		+0.6	-0.4		+0.6	V
		$R_L = 1M\Omega$, $T_A = +25^{\circ}C$		±0.98			±0.98		
Output Voltage Swing	Vout	$ \begin{array}{l} R_{L} = \ 1M\Omega, \ 0^{\circ}C \leq T_{A} \leq \\ + 70^{\circ}C \end{array} $		±0.96			±0.96		V
Large-Signal Voltage		$\label{eq:VO} \begin{split} V_O &= \pm 0.1 V, R_L = 1 M \Omega, \\ T_A &= +25^\circ C \end{split}$		90			90		-10
Gain	Avol	$\label{eq:VO} \begin{split} V_O &= \pm 0.1 V, R_L = 1 M \Omega, \\ 0^\circ C &\leq T_A \leq +70^\circ C \end{split}$		80			80		dB
Unity-Gain Bandwidth	GBW			0.044			0.044		MHz
Input Resistance	R _{IN}			10 ¹²			10 ¹²		Ω
Common-Mode Rejection Ratio	CMRR	$R_{S} \le 100 k\Omega$		80			80		dB

ELECTRICAL CHARACTERISTICS (Triple/Quad) (continued)

 $(V_{SUPP} = \pm 1.0V, I_Q = 10\mu A, T_A = +25^{\circ}C, unless otherwise noted.)$ (Specifications apply to ICL7631/7632/7642 only.)

PARAMETER	SYMBOL	CONDITIONS		ICL76XXE	3		ICL76XXC	;	UNITS
PARAMETER	STMBUL	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
Power-Supply Rejection Ratio	PSRR			80			80		dB
Input-Referred Noise Voltage	en	$R_S = 100\Omega$, f = 1kHz		100			100		nV/√Hz
Input-Referred Noise Current	in	$R_S = 100\Omega$, f = 1kHz		0.01			0.01		pA/√Hz
Supply Current (Per Amplifier)	ISUPP	No signal, no load		6	15		6	15	μA
Channel Separation	V ₀₁ / V ₀₂	A _{VOL} = 100		120			120		dB
Slew Rate	SR	$\label{eq:VOL} \begin{split} A_{VOL} &= 1, \ C_L = 100 \text{pF}, \\ V_{IN} &= 0.2 \text{V}_{\text{P-P}}, \ R_L = 1 M \Omega \end{split}$		0.016			0.016		V/µs
Rise Time	tr	$V_{IN} = 50 \text{mV}, C_L = 100 \text{pF}, R_L = 1 M\Omega$		20			20		μs
Overshoot Factor		$V_{IN} = 50 \text{mV}, C_L = 100 \text{pF}, R_L = 1 \text{M}\Omega$		5			5		%

ELECTRICAL CHARACTERISTICS (Triple/Quad)

PARAMETER	SYMBOL	CONDITIONS	IC	CL76XX	B	10	CL76XX	С	IC	CL76XX	E	UNITS	
PARAMETER	STMBUL	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ΤΥΡ	MAX	UNITS	
Input Offset	Vac	R _S ≤ 100kΩ, T _A = +25°C			5			10			20	mV	
Voltage	V _{OS}	$\label{eq:RS} \begin{split} R_S &\leq 100 k \Omega, \\ T_{MIN} &\leq T_A \leq T_{MAX} \end{split}$			7			15			25	IIIV	
Temperature Coefficient of V _{OS}	ΔV _{OS} /ΔT	$R_S \le 100 k\Omega$		15			20			30		µV/°C	
		$T_A = +25^{\circ}C$		0.5	30		0.5	30		0.5	30		
Input Offset Current	IOS	C: 0°C ≤ T _A ≤ +70°C			300			300			300	pА	
Current		M: -55°C≤ T _A ≤ +125°C			800			800			800		
		$T_A = +25^{\circ}C$		1.0	50		1.0	50		1.0	50		
Input Bias Current	I _{BIAS}	C: 0°C ≤ T _A ≤ +70°C			500			500			500	рА	
	(0	M: -55°C≤ T _A ≤ +125°C			4000			4000			4000		

ELECTRICAL CHARACTERISTICS (Triple/Quad) (continued)

	0/450	CONDITIONS		IC	L76XX	(B	10	CL76XX	C	IC	CL76XX	E	
PARAMETER	SYMBOL	COND	THONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
		$I_Q = 10 \mu A$	(Noto 7)	+4.4			+4.4			+4.4			
		$IQ = IO\mu P$	(NOLE 7)	-4.0			-4.0			-4.0			
Common-Mode	VCMR	lo – 100u	A (Note 9)	+4.2			+4.2			+4.2			v
Voltage Range	V CIVIR	ių – 100µ	A (NOLE 3)	-4.0			-4.0			-4.0			v
		I _Q = 1mA (Note 8)		+3.7			+3.7			+3.7			
		IQ = IIIA (NOLE 8)		-3.7			-3.7			-3.7			
			T _A = +25°C	±4.9			±4.9			±4.9			
	1 F 1 (1 1 VOUT F	$I_{Q} = 10\mu A,$ $R_{L} = 1M\Omega$ (Note 7)	C: 0°C ≤ T _A ≤ +70°C	±4.8			±4.8			±4.8			
			M: -55°C ≤ T _A ≤ +125°C	±4.7			±4.7			±4.7			
		I _Q = 100μΑ, R _L = 100kΩ	T _A = +25°C	±4.9			±4.9			±4.9			
Output Voltage Swing			C: 0°C ≤ T _A ≤ +70°C	±4.8			±4.8			±4.8			V
		(Note 9)	M: -55°C ≤ T _A ≤ +125°C	±4.5			±4.5			±4.5			
			T _A = +25°C	±4.5			±4.5			±4.5			
		l _Q = 1mA, RL = 10kΩ	C: 0°C ≤ T _A ≤ +70°C	±4.3			±4.3			±4.3			
		(Note 8)	M: -55°C ≤ T _A ≤ +125°C	±4.0			±4.0			±4.0			

ELECTRICAL CHARACTERISTICS (Triple/Quad) (continued)

DADAMETED	0/4/201	CONDITIONS		IC	CL76XX	B	I	CL76XX	С	I	CL76XX	E	
PARAMETER	SYMBOL	COND	CONDITIONS		ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
		V _O =	T _A = +25°C	86	104		80	104		80	104		
		±4.0V, R _L = 1MΩ, I _Q = 10μA (Note 7)	C: 0°C ≤ T _A ≤ +70°C	80			75			75			
			M: -55°C ≤ T _A ≤ +125°C	74			68			68			
		$V_{O} = \pm 4.0V,$ $R_{L} = 100k\Omega,$ $I_{Q} = 100\mu A$	T _A = +25°C	86	102		80	102		80	102		
Large-Signal Voltage Gain	Avol		C: 0°C ≤ T _A ≤ +70°C	80			75			75			dB
			M: -55°C ≤ T _A ≤ +125°C	74			68			68			
		$V_{O} = \pm 4.0V,$ $R_{L} = 10k\Omega$ (Note 8), $I_{Q} = 1mA$ (Note 7)	T _A = +25°C	86	98		80	98		80	98		
			C: 0°C ≤ T _A ≤ +70°C	80			75			75			
			M: -55°C ≤ T _A ≤ +125°C	74			68			68			

ELECTRICAL CHARACTERISTICS (Triple/Quad) (continued)

PARAMETER	SYMBOL	MBOL CONDITIONS			ICL76X	ХВ	ŀ	CL76XX	С	ŀ	CL76XX	E	UNITS
PARAMETER	STIVIDUL	CON	DITIONS	MIN	TYP	МАХ	MIN	ТҮР	MAX	MIN	ТҮР	MAX	
		$I_{Q} = 10\mu$	A (Note 7)		0.044			0.044			0.044		
Unity-Gain Bandwidth	G _{BW}	$I_Q = 100$	µA (Note 9)		0.48			0.48			0.48		MHz
Banawiati		l _Q = 1m.	A (Note 8)		1.4			1.4			1.4		
Input Resistance	R _{IN}				10 ¹²			10 ¹²			10 ¹²		Ω
		$R_{S} \le 100$ $I_{Q} = 10\mu$)kΩ, A (Note 7)	76	96		70	96		70	96		
Common-Mode Rejection Ratio	CMRR	$R_{\rm S} \le 100$ $I_{\rm Q} = 100$,	76	91		70	91		70	91		dB
		$\label{eq:RS} \begin{split} R_S &\leq 100 k \Omega, \\ I_Q &= 1 m A \; (Note \; 8) \end{split}$		66	87		60	87		60	87		
		$R_{\rm S} \le 100$ $I_{\rm Q} = 10\mu$	0kΩ, A (Note 7)	80	94		80	94		80	94		
Power-Supply Rejection Ratio	PSRR	$R_{\rm S} \le 100$ $I_{\rm Q} = 100$		80	86		80	86		80	86		dB
			$\label{eq:RS} \begin{split} R_S &\leq 100 k \Omega, \\ I_Q &= 1 m A \; (Note \; 8) \end{split}$		77		70	77		70	77		
Input-Referred Noise Voltage	en	R _S = 10	$R_{S} = 100\Omega$, f = 1kHz		100			100			100		nV/√Hz
Input-Referred Noise Current	in	R _S = 10	$\Omega\Omega, f = 1 \text{kHz}$		0.01			0.01			0.01		pA/√Hz
			I _Q = 10μΑ (Note 7)		0.01	0.022		0.01	0.022		0.01	0.022	
Supply Current (Per Amplifier)	ISUPP	No signal, no load	I _Q = 100μΑ		0.1	0.25		0.1	0.25		0.1	0.25	mA
		no load	I _Q = 1mA (Note 8)		1.0	2.5		1.0	2.5		1.0	2.5	
Channel Separation	V _{O1} / V _{O2}	A _{VOL} =	100		120			120			120		dB
	ation	Avol =	I _Q = 10μA (Note 7), R _L = 1MΩ		0.016			0.016			0.016		
Slew Rate (Note 10)	SR	1, CL = 100pF, VIN =	$\begin{split} I_Q &= 100 \mu A, \\ R_L &= 100 k \Omega \end{split}$		0.16			0.16			0.16		V/µs
		V _{IN} = 8V _{P-P}	l _Q = 1mA (Note 7), R _L = 10kΩ		1.6			1.6			1.6		

ELECTRICAL CHARACTERISTICS (Triple/Quad) (continued)

(V_{SUPP} = $\pm 5.0V$, T_A = $+25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		ICL76XXB			ICL76XXC			ICL76XXE				
PARAMETER				MIN	ТҮР	MAX	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS	
Rise Time (Note 10)	tr	V _{IN} = 50mV, C _L = 100pF	I _Q = 10μA (Note 7), R _L = 1MΩ		20			20			20			
			$\label{eq:lQ} \begin{split} I_Q &= 100 \mu A, \\ R_L &= 100 k \Omega \end{split}$		2			2			2		μs	
			I _Q = 1mA (Note 8), R _L = 10kΩ		0.9			0.9			0.9			
Overshoot Factor (Note 10)		V _{IN} = 50mV, C _L = 100pF	I _Q = 10μA (Note 7), R _L = 1MΩ		5			5			5		%	
			$\label{eq:lq} \begin{array}{l} I_Q = 100 \mu A, \\ R_L = 100 k \Omega \end{array}$		10			10			10			
			I _Q = 1mA (Note 8), R _L = 10kΩ		40			40			40			

Note 7: Does not apply to ICL7641.

Note 8: Does not apply to ICL7642.

Note 9: ICL7631/ICL7632 only.

Note 10: Does not apply to ICL7632.

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Typical Operating Characteristics

100 1k 10k 100k 1M

10 100 1k FREQUENCY - Hz

0,1

$(T_A = +25^{\circ}C, unless otherwise noted.)$ SUPPLY CURRENT PER AMPLIFIER AS A FUNCTION OF SUPPLY VOLTAGE PEAK-TO-PEAK OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY TA = +25C TA + 25C NO LOAD NO SIGNAL 1 VOLTAGE $l_0 = 1mA$ $l_0 = 10\mu A$ $l_0 = 100\mu A$ ۱ l_o = 1mA 12 ۱ 4 DUTPUT SUPP CURRENT $I_{c} = 100 \mu A$ 10V ٦ TO-PEAK SUPPLY ۱ $I_Q = 10 \mu A$ PEAK-1 MAXIMUM 12 14 Б 8 10 16 100 10k 100k 2 4 18 SUPPLY VOLTAGE - VOLTS FREQUENCY - Hz LARGE SIGNAL DIFFERENTIAL POWER SUPPLY REJECTION RATIO AS A FUNCTION OF FREE-AIR TEMPERATURE VOLTAGE GAIN AS A FUNCTION OF FREE-AIR TEMPERATURE 1000 VSUPP I_o = 1mA 병 V/m/V 95 R∟ = 1ΜΩ I₀ = 10⊯A RATIO 90 GAIN $I_{0} = 100 \mu A$ 100 REJECTION VOLTAGE 85 l_o = 10μΑ R. = 100kΩ I₀ = 100μA 80 VOLTAGE DIFFERENTIAL 16 R_ = 10kΩ la = 1mA 75 SUPPLY VSUPP = 10 VOLTS 65 --50 --25 0 +25 +50 +75 +100 FREE-AIR TEMPERATURE - °C +25 +50 +75 +100 +125 -75 -50 -25 0 +125 -75 FREE-AIR TEMPERATURE - °C LARGE SIGNAL DIFFERENTIAL MAXIMUM OUTPUT SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE VOLTAGE GAIN AND PHASE SHIFT AS A FUNCTION OF FREQUENCY 0.0 102 Ě Vsuep = 16 V ι_ω = 10μΑ Au(100 = 100 A 108 CUPRENT NIV 10⁵ n. VOLTAGE 10 SINK 0 $L_2 = 100 \mu A$ DIFFERENTIAL V DUTPUT 45' HASE SH (IQ = 1 mA) 90' MAXIMUM $l_0 = 1mA$ 10 135 10 180

Typical Operating Characteristics (continued)

4 6 8 10 12 SUPPLY VOLTAGE - VOLTS

2

14 16

ICL761X-ICL764X

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

>

1

1000

₹100

CURRENT 10

BIAS

16

Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE

Detailed Description

Quiescent Current Selection

The voltage input to the IQ pin of the single and triple amplifiers selects a quiescent current (IQ) of 10μ A, 100μ A, or 1000μ A. The dual and quad amplifiers have fixed quiescent current (IQ) settings. Unity-gain bandwidth and slew-rate increase with increasing quiescent current, as does output sink current capability. The output source current capability is independent of quiescent current.

The lowest IQ setting that results in sufficient bandwidth and slew rate should be selected for each specific application.

The IQ pin of the single and triple amplifiers controls the quiescent current as follows:

$I_Q = 10 \mu A$	I _Q pin to V+
$I_Q = 100 \mu A$	$I_{\mbox{\scriptsize Q}}$ pin between V- + 0.8V and V+ - 0.8V
$I_Q = 1mA$	I _Q pin to V-

Input Offset Nulling

The input offset can be nulled by connecting a $25k\Omega$ pot between the OFFSET terminals with the wiper connected to V+. At quiescent currents of 1mA and 100µA, the nulling range provided is adequate for all V_{OS} selections. However, with higher values of V_{OS}, and an I_Q of 10µA, nulling may not be possible.

Frequency Compensation

All of the ICL7611 and ICL7621 series except the ICL7614 are internally compensated for unity-gain operation. The ICL7614 is externally compensated by a capacitor connected between COMP and OUT pins, with 39pF being greater than unity. The compensation capacitor value may be reduced to increase the bandwidth and slew rate. The ICL7132 is not compensated and does not have frequency compensation pins. Use only at gains 20 at IQ of 1mA; at gains > 10 at IQ of 100 μ A; at gain > 5 at IQ of 10 μ A.

Output Loading Considerations

Approximately 70% of the amplifier's quiescent current flows in the output stage. The output swing can approach the supply rails for output loads of $1M\Omega$, $100k\Omega$, and $10k\Omega$, using the output stage in a highly linear Class A mode. Crossover distortion is avoided

Single/Dual/Triple/Quad Operational Amplifiers

and the voltage gain is maximized in this mode. The output stage, however, can also be operated in Class AB, which supplies higher output currents (see the *Typical Operating Characteristics*). The voltage gain decreases and the output transfer characteristic is non-linear during the transition from Class A to Class B operation.

The output stage, with a gain that is directly proportional to load impedance, approximates a transconductance amplifier. Approximately the same open-loop gains are obtained at each of the I_Q settings if corresponding loads of $10k\Omega$, $100k\Omega$, and $1M\Omega$ are used.

The maximum output source current is higher than the maximum sink current, and is independent of Iq.

Like most amplifiers, there are output loads for which the amplifier stability is not guaranteed. In particular, avoid capacitive loads greater than 100pF; and while on the 1mA IQ setting, avoid loads less than 5k Ω . Since the output stage is a transconductance output, very large (>10\muF) capacitive loads will create a dominant pole and the output will be stable, even with loads that are less than 5k Ω .

Extended Common-Mode Voltage Range (ICL7612/ICL7616)

A common-mode voltage range that includes both V+ and V- is often desirable, especially in single-supply operation. The ICL7612/ICL7616 extended commonmode range op amps are designed specifically to meet this need. The ICL7612 input common-mode voltage range (CMVR) extends beyond both power-supply rails when operated with at least 3V total supply and an IQ of 10 μ A or 100 μ A. The ICL7616 CMVR includes the negative supply voltage (or ground when operated with a single supply) at an IQ or 10 μ A or 100 μ A.

PC Board Layout

Careful PC board layout techniques must be used to take full advantage of the very low bias current of the ICL7611 family. The inputs should be encircled with a low-impedance trace, or guard, that is at the same potential as the inputs. In an inverting amplifier, this is normally ground; in a unity-gain buffer connect the guard to the output. A convenient way of guarding the 8-pin TO-99 version of the ICL7611 is to use a 10-pin circle, with the two extra pads on either side of the input pins to provide space for a guard ring (see Figure 8). Assembled boards should be carefully cleaned, and if a high humidity environment is expected, conformally coated.

Single-Supply Operation

The ICL7611 family will operate from a single 2V to 16V power supply. The common-mode voltage range of the standard amplifier types when operated from a single supply is 1.0V to (V+ - 0.6V) at 10 μ A IQ. At 100 μ A IQ, the CMVR is 1.0V to (V+ - 0.8V), and at 1mA IQ, the CMVR is 1.3V to (V+ - 1.3V). If this CMVR range is insufficient, use the ICL7612, whose CMVR includes both ground and V+, or the ICL7616, whose CMVR includes ground.

A convenient way to generate a psuedo-ground at V+/2 is to use one op amp of a quad to buffer a V+/2 voltage from a high-impedance resistive divider.

Low-Voltage Operation

Operation at V_{SUPP} = ±1.0V is only guaranteed at I_Q = 10µA. Output swings to within a few millivolts of the supply rails are achievable for R_L (> or =) 1MΩ. Guaranteed input CMVR is ±0.6V minimum and typically +0.9V to -0.7V at V_{SUPP} = ±1.0V. For applications where greater common-mode range is desirable, see the description of ICL7612 and ICL7616 above.

_Applications Information

Note that in no case is IQ shown. The value of IQ must be chosen by the designer with regard to frequency response and power dissipation.

Figure 1. Instrumentation Amplifier—Adjust R3 to improve CMRR. The offset of all three amplifiers is nulled by the offset adjustment of A2.

Figure 2. Simple Follower—By using the ICL7612 in these applications, the circuits will follow rail-to-rail inputs

Figure 3. Level Detector—By using the ICL7612 in these applications, the circuits will follow rail-to-rail inputs.

Figure 5. Precise Triangle/Square Wave Generator—The frequency and duty cycle are virtually independent of power supply.

Figure 7. Burn-In and Life Test Circuit

Figure 4. Photocurrent Integrator—Low-leakage currents allow integration times up to several hours.

Figure 6. Averaging AC to DC Converter—Recommended for Maxim's ICL7106/ICL7107/ICL7109 A/D Converters.

Figure 8. Input Guard for TO-99

Figure 9. Low Droop Rate Sample and Hold—S2 improves accuracy and acquisition time by including the voltage drop across S1 inside the feedback loop. R1 closes the feedback loop of A1 during the hold phase. The droop rate is [IBIAS(AZ) + ILEAK(S1) + ILEAK(S2)]/CHOLD.

Figure 11. Pico Ammeter—The response time of this curcuit is $R_{FB} \times C_{FB}$, where C_{FB} is the stray capacitance between the output and the inverting terminal of the amplifier.

Figure 10. Long-Time Constant Integrator—With $R_{IN} = 1011\Omega$, the time constant of this integrator is 100,000s. Since the input voltage is converted to a current by R_{IN} , the input voltage can far exceed the power-supply range.

Figure 12. 60Hz Twin "T" Notch Filter—The low 1pA bias current of the ICL7611 allows use of small 540pF and 270pF capacitors, even with a notch frequency of 60Hz. The 60Hz rejection is approximately 40dB.

Typical Operating Circuit

_Chip Topographies

Package Information

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
TO99	Т99-8	<u>21-0022</u>
8 PDIP	P8-1	<u>21-0043</u>
8 SO	S8-2	<u>21-0041</u>
8 CDIP	J16-3	<u>21-0045</u>
14 PDIP	P14-3	<u>21-0043</u>
14 CDIP	J14-3	<u>21-0045</u>
16 PDIP	P16-1	<u>21-0043</u>
16 SO	S16-1	<u>21-0041</u>
16 Wide SO	W16-2	<u>21-0042</u>

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	4/08	Removed all part numbers offered in die form from the Ordering Information	2, 11
3	5/10	Corrected letter grades in EC table headings	13–17

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

26

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

Maxim is a registered trademark of Maxim Integrated Products, Inc.