

RETRIGGERABLE MONOSTABLE **MULTIVIBRATOR WITH CLEAR**

N74122-A,F • S54123-B,F,W • N74123-B,F

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

DESCRIPTION

These monostables are designed to provide the system designer with complete flexibility in controlling the pulse width, either to lengthen the pulse by retriggering, or to shorten by clearing. N74122 has an internal timing resistor which allows the circuit to be operated with only an external capacitor, if so desired. Applications requiring more precise pulse widths and not requiring the clear feature can best be satisfied with N74121.

The output pulse is primarily a function of the external capacitor and resistor. For $C_{ext} > 1000 pF$, the output pulse width (t_w) is defined as:

$$t_{w} = 0.32 R_{T}C_{ext} \left(1 + \frac{0.7}{R_{T}}\right)$$

where

 R_T is in k Ω (either internal or external timing resistor) Cext is in pF t_w is in ns

For pulse widths when C_{ext} < 1000pF, see Figure B.

These circuits are fully compatible with most TTL or DTL families. Inputs are diode-clamped to minimize reflections due to transmissionline effects, which simplifies design. Typical power dissipation per one shot is 115 milliwatts; typical average propagation delay time to the Q output is 21 nanoseconds. The N74122 and N74123 are characterized for operation from 0°C to 70°C.

					22	N741		
			PUTS	OUT		UTS	INP	
S54123,N74123	S541		٩	Q	B ₂	A ₁ A ₂ B ₁ B ₂		
		,	н	L	x	x	н	н
NPUTS OUTPUT	INPUTS		н	L	x	L	x	x
<u>в Q 7</u>	A B		н	L	L	x	x	x
XLH	нх		н	L	н	н	x	
			ប	<u> </u>	н	t	×	-
1 . i			ני	1	t	н	x	
	1 -		н	L	н	н	L	x
н Л І	↓ н		ע	1	н	t	L	x
			U	<u>л</u>	t	н	L	x
			1	<u>.</u>	н	н	÷	н
			ਪ ਪ	л	н	н	Ļ	ŧ
			1 U	Л	н	н	н	

NOTES:

A, H = high level (steady-state), L = low level (steady-state), f = transition from low to high level, \downarrow =

74122 A,F PACKAGE

[†]Pin assignments for these circuits are the same for all packages.

	INP	UTS	ουτι	PUTS
	Α	8	Q	۵
1	н	х	L	н
1	х	L	L	н
	L	t	л	ប
	t	н	л	ប

- B. NC = No internal connection.
- C. To use the internal timing resistor of N74122 (10k Ω nominal), connect Rint to VCC-
- D. An external timing capacitor may be connected between Cext and R_{ext}/C_{ext} (positive).

transition from high to low level, IL = one high-level pulse, LC = one low-level pulse, X = Irrelevant (any input, including transitions).

RECOMMENDED OPERATING CONDITIONS

		S54123	, N74122,	N74123	UNIT
		MIN	NOM	MAX	
Supply Voltage V _{CC}		4.75	5	5.25	l v
Normalized Fan-Out from each Output, N	High Logic Level			20	
	Low-Logic Level			10	
Input data setup time, t _{setup} (See Note 3)		+ 40 †			ns
Input data hold time, thold (See Note 4)		40 [†]			ns
Width of Clear Pulse, tw(clear)		40†			ns
External Timing Resistance		5		50	kΩ
External Capacitance		N	o Restrictio		
Wiring Capacitance at R _{ext} /C _{ext} Terminal				50	PF °C
Operating Free-Air Temperature, TA		0	25	70	°C

[†]These conditions are recommended for use at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

- NOTES: 1. Voltage values, except intermitter voltage, are with respect to network ground terminal.
 - This is the voltage between two emitters of a multiple-emitter transistor. For the N74122 circuit, this rating applies to each A input with respect to the other and to each B input with respect to the other.
 - 3. Setup time for a dynamic input is the interval immediately preceding the transition which constitutes the dynamic input, during which interval a steady-state logic level must be maintained at the input to ensure recognition of the transition.
 - 4. Hold time for a dynamic input is the interval immediately following the transition which constitutes the dynamic input, during which interval a steady-state logic level must be maintained at the input to ensure continued recognition of the transition.
 - Ground C_{ext} to measure V_{OH} at Q, V_{OL} at Q, or I_{OS} at Q. C_{ext} is open to measure V_{OH} at Q, V_{OL}at Q, or I_{OS} at Q.
 Quiescent I_{CC} is measured (after clearing) with 2.4V applied to all clear and A Inputs, B inputs grounded, all outputs open. C_{ext} = 0.02µF, and R_{ext} = 25kΩ. R_{int} of S54122/N74122 is open.
 - $C_{ext} = 0.02\mu$ F, and $R_{ext} = 25k\Omega$. Rint of S54122/N74122 is open. $C_{ext} = 0.02\mu$ F, and $R_{ext} = 25k\Omega$. Rint of S54122/N74122 is open.

ELECTRICAL CHARACTERISTICS (over operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS*	MIN	TYP**	MAX	UNIT
VIH	High-level input voltage			2			v
VIL	Low-level input voltage					0.8	v
Vi	Input clamp voltage	V _{CC} = MIN,	I _I = -12mA			-1.5	v V
∨он	High-level output voltage	V _{CC} = MIN, See Note 5	1 _{OH} = -800µA	2.4			v
VOL	Low-level output voltage	V _{CC} = MIN, See Note 5	I _{OL} = 16mA,		0.22	0.4	v
η	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5V			1	mA
ЧН	High-level input current data inputs clear input	V _{CC} = MAX,	V _I = 2.4V	8		40 80	μΑ
hι	Low-level input current data inputs clear input	V _{CC} = MAX,	V∤ = 0.4V			-1.6 -3.2	mA
los	Short-circuit output current [†]	V _{CC} = MAX,	See Note 5	-10		-40	mA
lcc	Supply current (quiescent or triggered)	V _{CC} = MAX, See Notes 6 and 7	N74122 N74123		23 46	28 66	mA

SWITCHING CHARACTERISTICS, $V_{CC} = 5V$, $T_A = 25^{\circ}C$, N = 10

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
^t PLH	Propagation delay time, low-to- high-level Q output, from either - A input				22	33	ns
^t PLH	Propagation delay time, low-to- high-level Q output, from either B input) ÷	19	28	ns
t₽HL	Propegation delay time, high-to- low-level Q output, from either A input	C _{ext} = 0, C _L = 15pF,	R _{ext} = 5kΩ, R ₁ = 400Ω,		30	40	ns
^t PHL	Propagation delay time, high-to- low-level Q output, from either B input	С[= тэрг,	RL - 40032,		27	36	ns
^t PHL	Propagation delay time, high-to- low-level Q output, from clear input				18	27	ns
^t PLH	Propagation delay time, low-to- high-level Q output, from clear input				30	40	ns
t _{w(min)}	Minimum width of Q output pulse	1.1			45	65	ns
tw	Width of Q output pulse	C _{ext} = 1000pF, C _L = 15pF,	R _{ext} = 10kΩ RL = 400Ω	3.08	3.42	3.76	μs
				-		140	8

DIGITAL 54/74 TTL SERIES = N74122, S54123, N74123

* For conditions shown as MIN or MAX, use the value specified under recommended operating conditions for the applicable device type.

- ** All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.
- t Not more than one output should be shorted at a time.

DESCRIPTION

These monolithic TTL retriggerable monostable multivibrators feature dc triggering from gated low-level-active (A) and high-levelactive (B) inputs, and also provide overriding direct clear inputs. Complementary outputs are provided. A full fan-out to 10 normalized Series 54/74 loads is available from each of the outputs at the low logic level, and in the high-level state, a fan-out of 20 is available. The retrigger capability simplifies the generation of output pulses of extremely long duration. By triggering the input before the output pulse is terminated, the output pulse may be extended. The overriding clear capability permits any output pulse to be terminated at a predetermined time independently of the timing components R and C.

Figure A illustrates triggering the one-shot with the high-level-active (B) inputs.

TYPICAL CHARACTERISTICS (Figure B)

OUTPUT PULSE WIDTH vs t These values of resistance exceed the maximums EXTERNAL TIMING CAPACITANCE recommended for use over the full temperature 10 000 range of the S54122 and S54123. 7 000 4 000 2 000 1 000 700 400 200 100 70 40 NOTE: When using electrolytic capacitor, 20 insure that minimum rating is 20 10 volts so that 5% reverse voltage 1 2 4 10 20 40 100 200 400 rating is 1.0 volt or greater. Care-External Timing Capacitance-pl

TYPICAL INPUT/OUTPUT PULSES (Figure A)

