N7480 \$5480-A,F,W • N7480-A,F # DIGITAL 54/74 TTL SERIES #### DESCRIPTION The S5480/N7480 is a single-bit, high-speed, binary full adder with gated complementary inputs, complementary sum (Σ and $\overline{\Sigma}$) outputs and inverted carry output. Designed for medium- and high-speed, multiple-bit, parallel-add/serial-carry applications, the circuit (see schematic diagram) utilizes diode-transistor logic (DTL) for the gated inputs, and high-speed, high-fan-out transistortransistor logic (TTL) for the sum and carry outputs. The circuit is entirely compatible with both DTL and TTL logic families. The implementation of a single-inversion, high-speed, Darlingtonconnected serial-carry circuit minimizes the necessity for extensive "look-ahead" and carry-cascading circuits. The power dissipation has been maintained considerably below that attainable with equivalent standard integrated circuits connected to perform fulladder functions. TRUTH TABLE (See Notes 1,2, and 3) | շո | В | Α | C _{n+1} | $\overline{\Sigma}$ | Σ | |----|---|---|------------------|---------------------|---| | 0 | 0 | 0 | 1 | 1 | 0 | | 0 | 0 | 1 | 1 1 | 0 | 1 | | 0 | 1 | 0 | 1 1 | 0 | 1 | | 0 | 1 | 1 | 0 | 1 | 0 | | 1 | 0 | 0 | 1 | 0 | 1 | | 1 | 0 | 1 | 0 | 1 | 0 | | 1 | 1 | 0 | 0 | 1 | 0 | | 1 | 1 | 1 | 0 | 0 | 1 | ### NOTES: - 1. $A = \overline{A^* \cdot A_c}$, $B = \overline{B^* \cdot B_c}$ where $A^* = \overline{A_1 \cdot A_2}$, $B^* = \overline{B_1 \cdot B_2}$. 2. When A^* or B^* are used as inputs, A_1 and A_2 or B_1 and B_2 respectively, must be connected to GND. ## PIN CONFIGURATIONS - When A₁ and A₂ or B₁ and B₂ are used as inputs, A* or B* respectively, must be open or used to perform Dot-OR logic. The voltages are with respect to ground terminal. Input signals must be zero or positive with respect to network ground terminal. # SIGNETICS DIGITAL 54/74 TTL SERIES - S5480 ● N7480 ## RECOMMENDED OPERATING CONDITIONS | | MIN | NOM | MAX | UNIT | |--|------|-----|------|------| | Supply Voltage V _{CC} : S5480 Circuits | 4.5 | 5 | 5.25 | V | | N7480 Circuits | 4.75 | 5 | 5.25 | V | | Normalized Fan-Out from Outputs: $\overline{C_n+1}$, N | | | 5 | | | Σ or Σ, N | | | 10 | | | A* or B*, N | | | 3 | | | Operating Free-Air Temperature Range, TA: S5480 Circuits | -55 | 25 | 125 | °c | | N7480 Circuits | 0 | 25 | 70 | °C | ## ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted) | | PARAMETER | | TEST CONDITIONS* | | | TYP* * | MAX | UNIT | |--------------------|---|--|--|----------------|------------|----------|------------|----------| | V _{in(1)} | Logical 1 input voltage | V _{CC} = MIN | | | 2 | | | v | | V _{in(0)} | Logical 0 input voltage | V _{CC} = MIN | | | | | 0.8 | V | | $V_{out(1)}$ | Logical 1 output voltage | V _{CC} = MIN | | | 2.4 | 3.5 | | V | | $V_{out(0)}$ | Logical 0 output voltage | V _{CC} = MIN | | | | 0.22 | 0.4 | v | | lin(0) | Logical 0 level input current at A_1 , A_2 , B_1 , B_2 , A_c or B_c | V _{CC} = MAX, | $V_{in} = 0.4V$ | | i. | | -1.6 | mA | | ¹ in(0) | Logical O level input current at A* or B* | V _{CC} = MAX, | $V_{in} = 0.4V$ | | | | -2.6 | mA | | l _{in(0)} | Logical 0 level input current at C _n | V _{CC} = MAX, | V _{in} = 0.4V | | | | -8 | mA | | lin(1) | Logical 1 level input current at A_1 , A_2 , B_1 , B_2 , A_6 or B_6 | V _{CC} = MAX,
V _{CC} = MAX | V _{in} = 2.4V
V _{in} = 5.5V | | | | 15
1 | μA
mA | | lin(1) | Logical 1 level input current at C _n | V _{CC} = MAX,
V _{CC} = MAX, | V _{in} = 2.4V
V _{in} = 5.5V | | | | 200
1 | μA
mA | | los | Short circuit output current at Σ or Σ † | V _{CC} = MAX, | | S5480
N7480 | -20
-18 | | -57
-57 | mA
mA | | los | Short circuit output current at C _{n+1} † | V _{CC} = MAX, | | S5480
N7480 | -20
-18 | | -70
-70 | mA
mA | | 'cc | Supply current | V _{CC} = MAX, | | S5480
N7480 | | 21
21 | 31
35 | mA
mA | # SWITCHING CHARACTERISTICS, $V_{CC} = 5V$, $T_A = 25^{\circ}C$ | PARAMETER¶ tpd1 tpd0 | FROM TO INPUT OUTPUT | | TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |--------------------------------------|----------------------------|--|--|--|---------|----------|----------|--------| | | c_n $\overline{c_{n+1}}$ | C _L = 15pF,
C ₁ = 15pF, | $R_L = 780\Omega$
$R_L = 780\Omega$ | | 13
8 | 17
12 | ns
ns | | | ^t pd1
^t pd0 | Вc | C _{n+1} | C _L = 15pF,
C _L = 15pF, | $R_L = 780\Omega$
$R_L = 780\Omega$ | | 18
38 | 25
55 | n
n | | ^t pd1
^t pd0 | A _C | Σ | $C_{L} = 15pF,$
$C_{L} = 15pF,$ | $R_L = 400\Omega$
$R_L = 400\Omega$ | | 52
62 | 70
80 | n
n | | ^t pd1
^t pd0 | ^B C | $\overline{\Sigma}$ | C _L = 15pF,
C _L = 15pF, | $R_L = 400\Omega$
$R_L = 400\Omega$ | | 38
56 | 55
75 | n
n | | ^t pd1
^t pd0 | A ₁ | A* | C _L = 15pF
C _L = 15pF | | | 48
17 | 65
25 | n | | ^t pd1
^t pd0 | B ₁ | В* | C _L = 15pF
C _L = 15pF | | | 48
17 | 65
25 | r | ^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type. ^{**} All typical values are at V_{CC}= 5V, T_A = 25°C † Not more than one output should be shorted at a time. ¶ t_{pd1} is propagation delay time to logical 1 level. t_{pd0} is propagation delay time to logical 0 level.