N7480

\$5480-A,F,W • N7480-A,F

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The S5480/N7480 is a single-bit, high-speed, binary full adder with gated complementary inputs, complementary sum (Σ and $\overline{\Sigma}$) outputs and inverted carry output. Designed for medium- and high-speed, multiple-bit, parallel-add/serial-carry applications, the circuit (see schematic diagram) utilizes diode-transistor logic (DTL) for the gated inputs, and high-speed, high-fan-out transistortransistor logic (TTL) for the sum and carry outputs. The circuit is entirely compatible with both DTL and TTL logic families. The implementation of a single-inversion, high-speed, Darlingtonconnected serial-carry circuit minimizes the necessity for extensive "look-ahead" and carry-cascading circuits. The power dissipation has been maintained considerably below that attainable with equivalent standard integrated circuits connected to perform fulladder functions.

TRUTH TABLE (See Notes 1,2, and 3)

շո	В	Α	C _{n+1}	$\overline{\Sigma}$	Σ
0	0	0	1	1	0
0	0	1	1 1	0	1
0	1	0	1 1	0	1
0	1	1	0	1	0
1	0	0	1	0	1
1	0	1	0	1	0
1	1	0	0	1	0
1	1	1	0	0	1

NOTES:

- 1. $A = \overline{A^* \cdot A_c}$, $B = \overline{B^* \cdot B_c}$ where $A^* = \overline{A_1 \cdot A_2}$, $B^* = \overline{B_1 \cdot B_2}$. 2. When A^* or B^* are used as inputs, A_1 and A_2 or B_1 and B_2 respectively, must be connected to GND.

PIN CONFIGURATIONS

- When A₁ and A₂ or B₁ and B₂ are used as inputs, A* or B* respectively, must be open or used to perform Dot-OR logic.
 The voltages are with respect to ground terminal.
 Input signals must be zero or positive with respect to network ground terminal.

SIGNETICS DIGITAL 54/74 TTL SERIES - S5480 ● N7480

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V _{CC} : S5480 Circuits	4.5	5	5.25	V
N7480 Circuits	4.75	5	5.25	V
Normalized Fan-Out from Outputs: $\overline{C_n+1}$, N			5	
Σ or Σ, N			10	
A* or B*, N			3	
Operating Free-Air Temperature Range, TA: S5480 Circuits	-55	25	125	°c
N7480 Circuits	0	25	70	°C

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER		TEST CONDITIONS*			TYP* *	MAX	UNIT
V _{in(1)}	Logical 1 input voltage	V _{CC} = MIN			2			v
V _{in(0)}	Logical 0 input voltage	V _{CC} = MIN					0.8	V
$V_{out(1)}$	Logical 1 output voltage	V _{CC} = MIN			2.4	3.5		V
$V_{out(0)}$	Logical 0 output voltage	V _{CC} = MIN				0.22	0.4	v
lin(0)	Logical 0 level input current at A_1 , A_2 , B_1 , B_2 , A_c or B_c	V _{CC} = MAX,	$V_{in} = 0.4V$		i.		-1.6	mA
¹ in(0)	Logical O level input current at A* or B*	V _{CC} = MAX,	$V_{in} = 0.4V$				-2.6	mA
l _{in(0)}	Logical 0 level input current at C _n	V _{CC} = MAX,	V _{in} = 0.4V				-8	mA
lin(1)	Logical 1 level input current at A_1 , A_2 , B_1 , B_2 , A_6 or B_6	V _{CC} = MAX, V _{CC} = MAX	V _{in} = 2.4V V _{in} = 5.5V				15 1	μA mA
lin(1)	Logical 1 level input current at C _n	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				200 1	μA mA
los	Short circuit output current at Σ or Σ †	V _{CC} = MAX,		S5480 N7480	-20 -18		-57 -57	mA mA
los	Short circuit output current at C _{n+1} †	V _{CC} = MAX,		S5480 N7480	-20 -18		-70 -70	mA mA
'cc	Supply current	V _{CC} = MAX,		S5480 N7480		21 21	31 35	mA mA

SWITCHING CHARACTERISTICS, $V_{CC} = 5V$, $T_A = 25^{\circ}C$

PARAMETER¶ tpd1 tpd0	FROM TO INPUT OUTPUT		TEST CONDITIONS		MIN	TYP	MAX	UNIT
	c_n $\overline{c_{n+1}}$	C _L = 15pF, C ₁ = 15pF,	$R_L = 780\Omega$ $R_L = 780\Omega$		13 8	17 12	ns ns	
^t pd1 ^t pd0	Вc	C _{n+1}	C _L = 15pF, C _L = 15pF,	$R_L = 780\Omega$ $R_L = 780\Omega$		18 38	25 55	n n
^t pd1 ^t pd0	A _C	Σ	$C_{L} = 15pF,$ $C_{L} = 15pF,$	$R_L = 400\Omega$ $R_L = 400\Omega$		52 62	70 80	n n
^t pd1 ^t pd0	^B C	$\overline{\Sigma}$	C _L = 15pF, C _L = 15pF,	$R_L = 400\Omega$ $R_L = 400\Omega$		38 56	55 75	n n
^t pd1 ^t pd0	A ₁	A*	C _L = 15pF C _L = 15pF			48 17	65 25	n
^t pd1 ^t pd0	B ₁	В*	C _L = 15pF C _L = 15pF			48 17	65 25	r

^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

^{**} All typical values are at V_{CC}= 5V, T_A = 25°C

† Not more than one output should be shorted at a time.

¶ t_{pd1} is propagation delay time to logical 1 level. t_{pd0} is propagation delay time to logical 0 level.