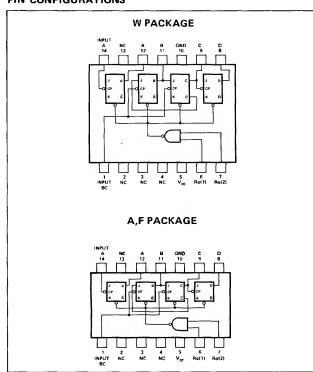
DIVIDE-BY-TWELVE COUNTER | \$5492 [DIVIDE-BY-TWO AND DIVIDE-BY-SIX]

\$5492-A,F,W • N7492-A,F

DIGITAL 54/74 TTL SERIES

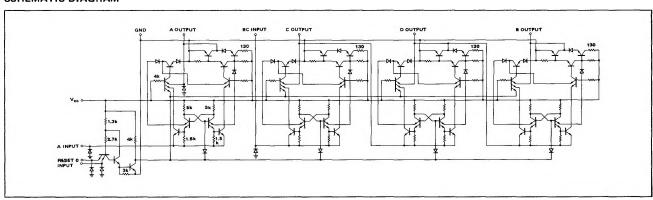

DESCRIPTION

The S5492/N7492 is a high-speed monolithic 4-bit binary counter consisting of four master-slave flip-flops which are internally interconnected to provide a divide-by-two counter and a divide-by-six counter. A gated direct reset line is provided which inhibits the count inputs and simultaneously returns the four flip-flops outputs to a logical 0. As the output from flip-flop A is not internally connected to the succeeding flip-flops the counter may be operated in two independent modes:

- 1. When used as a divide-by-twelve counter, output A must be externally connected to input BC. The input count pulses are applied to input A. Simultaneous division of 2, 6, and 12 are performed at the A, C, and D outputs as shown in the truth table.
- 2. When used as a divide-by-six counter, the input count pulses are applied to input BC. Simultaneously, frequency division of 3 and 6 are available at the C and D outputs. Independent use of flip-flop A is available if the reset function coincides with reset of the divide-by-six counter.

The S5492/N7492 is completely compatible with Series 54 and Series 74 logic families. Average power dissipation is 155mW.

PIN CONFIGURATIONS


TRUTH TABLE (See Notes 1 and 2)

	OUTPUT				
COUNT	۵	С	В	Α	
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	

0011117	OUTPUT				
COUNT	D	С	В	Α	
6	1	0	0	0	
7	1	0	0	1	
8	1	0	1	0	
9	1	0	1	1	
10	1	1	0	0	
11	1	1	0	1	

- 1. Output A connected to input B.
- 2. To reset all outputs to logical 0, both $R_{0(1)}$ and $R_{0(2)}$ inputs must be at logical 1.

SCHEMATIC DIAGRAM

SIGNETICS DIGITAL 54/74 TTL SERIES - S5492 • N7492

RECOMMENDED OPERATING CONDITIONS

MIN	NOM	MAX	UNIT
4.5	5	5.5	V
4.75	5	5.25	v
-55	25	125	°c
0	25	70	°c
	1	10	
50	1		ns
50			ns
	4.5 4.75 -55 0	4.5 5 4.75 5 -55 25 0 25	4.5 5 5.5 4.75 5 5.25 -55 25 125 0 25 70 10

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	т:	EST CONDITIONS	*	MIN	TYP**	MAX	UNIT
V _{in(1)}	Input voltage required to ensure logical 1 at any input terminal	V _{CC} = MIN			2			V
V _{in(0)}	Input voltage required to ensure logical 0 at any input terminal	V _{CC} = MIN					0.8	V
V _{out(1)}	Logical 1 output voltage	V _{CC} = MIN,	$I_{load} = -400\mu A$		2.4			V
V _{out(0)}	Logical 0 output voltage	V _{CC} = MIN,	I _{sink} = 16mA				0.4	V
lin(1)	Logical 1 level input current at $R_{O(1)}$ or $R_{O(2)}$ inputs	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				40 1	μA mA
lin(1)	Logical 1 level input current at input A	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				80 1	μA mA
lin(1)	Logical 1 level input current at input BC	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				160 1	μA mA
l _{in(0)}	Logical 0 level input current at $R_{0(1)}$ or $R_{0(2)}$ inputs	V _{CC} = MAX,	V _{in} = 0.4V				-1.6	mA
lin(0)	Logical 0 level input current input A	V _{CC} = MAX,	$V_{in} = 0.4V$				-3.2	mA
l _{in} (0)	Logical O'level input current at input BC	V _{CC} = MAX,	$V_{in} = 0.4V$				-6.4	mA
los	Short circuit output current †	V _{CC} = MAX,	$V_{out} = 0$	S5492 N7492	-20 -18		-57 -57	mA mA
'cc	Supply current	V _{CC} = MAX,	V _{in} = 4.5V	S5492 N7492		31 31	44 51	mA mA

SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 10

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
f _{max}	Maximum frequency of input count pulses	C _L = 15pF,	R _L = 400Ω	10	18		MHz
^t pd1	Propagation delay time to logical 1 level from input count pulse to output D	C _L = 15pF,	R _L = 400Ω		60	100	ns
^t pd0	Propagation delay time to logical 0 level from input count pulse to output D	C _L = 15pF,	R _L = 400Ω		60	100	ns

^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

** All typical values are at V_{CC}= 5V, T_A = 25°C.

† Not more than one output should be shorted at a time.