

HEX INVERTER | S54S04

S54S05 N74S04

\$54504-A,F,W • \$54\$05-A,F,W • N74\$04-A,F,W • N74\$05-A,F

DIGITAL 54/74 TTL SERIES N74S05

SCHEMATIC (each gate)

RECOMMENDED OPERATING CONDITIONS

		S54S04			N74S04			
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply Voltage V _{CC}		4.5	5	5.5	4.75	5	5.25	V
Normalized Fan-Out from each Output, N:	High logic level	1		20			20	1
	Low logic level			10			10	
Operating Free-Air Temperature, TA		-55		125	0		70	° (

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
∨ін	High-level input voltage				2			v
VIL	Low-level input voltage						0.8	l v
Vi	Input clamp voltage	$V_{CC} = MIN_{c}$	lı = -18mA				-1.2	(v
VOH	High-level output voltage	V _{CC} = MIN, I _{OH} = -1mA	V _{IL} = 0.8V,	Series 54S Series 74S	2.5 2.7	3.4 3.4		
VOL	Low-level output voltage	V _{CC} = MIN, I _{OL} = 20mA	V _{IH} = 2V,				0.5	v
ų –	Input current at maximum input voltage	V _{CC} = MAX,	VI = 5.5V				1	mA
Чн	High-level input current (each input)	V _{CC} = MAX,	V _I = 2.7V				50	μA
ΗL	Low-level input current (each input)	V _{CC} = MAX,	V _I = 0.5V				-2	mA
los	Short-circuit output current [†]	V _{CC} = MAX			-40		-100	mA
Іссн	Supply current, high-level output (average per gate)	V _{CC} = MAX,	All inputs at OV	,		2.5	4	mA
ICCL	Supply current, low-level output (average per gate)	V _{CC} = MAX,	All inputs at 5V	,		5	9	mA

DIGITAL 54/74 TTL SERIES = \$54\$04, \$54\$05, N74\$04, N74\$05

SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 10

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	
t=	Propagation delay time, low-to-high-	C _L = 15 pF,	R _L = 280 Ω		2	3	4.5	ns
^t PLH	level output	C _L = 50 pF,	R _L = 280 Ω			4.5		
•	Propagation delay time, high-to-	С _L = 15 рF,	R _L = 280 Ω	NOTE 1	2	3	5	
^t PHL low-level output	С _L = 50 рF,	R _L = 280 Ω	1		5			

\$54/N74S05

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST C	MIN	TYP**	MAX	UNIT	
∨ін	High-level input voltage			2			v
VIL	Low-level input voltage					0.8	l v
vi	Input clamp voltage	VCC = MIN,	lj = -18mA			-1.2	v
он	High-level output current	V _{CC} = MIN, V _{OH} = 5.5V	V _{IL} = 0.8V,			250	μA
Vol	Low-level output voltage	V _{CC} = MIN, I _{OL} = 20mA	V _{IH} = 2V,			0.5	v v
9	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5V			1	mA
н	High-level input current (each input)	$V_{CC} = MAX_{i}$	VI = 2.7V			50	μA
IL .	Low-level input current (each input)	$V_{CC} = MAX,$	V <mark>I</mark> = 0.5∨			-2	mA
ссн	Supply current, high-level output (average per gate)	V _{CC} = MAX,	All inputs at 0V		1.5	3.3	mA
CCL	Supply current, low-level output (average per gate)	V _{CC} = MAX,	All inputs at 5V		5	9	mA

SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 10

	PARAMETER TEST CONDITIONS			MIN	ТҮР	MAX	UNIT	
tPLH tPHL	Propagation delay time, low-to- high-level output Propagation delay time, high-to- low-level output	$C_{L} = 15pF,$ $C_{L} = 50pF,$ $C_{L} = 15pF,$ $C_{L} = 50pF,$	R _L = 280Ω R _L = 280Ω R _L = 280Ω R _L = 280Ω	NOTE 1	2 2	5 7.5 4.5 7	7.5 7	ns ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

•• All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}$ C. † Not more than one output should be shorted at a time, and duration of the short-circuit test should not exceed one second.

NOTES:

A. The pulse generator has the following characteristics: $V_{in(1)} = 3V$, $V_{in(0)} = 0V$, $t_1 = t_0 = 2.5ns$, PRR = 1 MHz, duty cycle = 50%, and $Z_{out} \approx 50 \Omega$. B. Inputs not under test are at 2.7V.

C. CL includes probe and jig capacitance.

NOTE 1: Load circuit and waveforms are shown on page 2-293