DESCRIPTION

The NE5592 is a dual monolithic, two stage, differential output, wideband video amplifier. It offers fixed gain of 400 without external components or adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers.

FEATURES

- 120MHz bandwidth
- . Adjustable gains from 0 to 400
- · Adjustable pass band
- No frequency compensation required
- Wave shaping with minimal external components

APPLICATIONS

- Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- Video recorder systems

ABSOLUTE MAXIMUM RATINGS $T_A = 25$ °C unless otherwise specified.

SYMBOL AND PARAMETER	RATING	UNIT		
Supply voltage	±8	V		
Differential input voltage	±5	' V		
Common mode				
Input voltage	±6	V		
Output current	10	mA.		
Operating temperature range		ŀ		
NE5592	0 to +70	°C		
Storage temperature range	-65 to +150	∘c		
Power dissipation	500	mW		

PIN CONFIGURATION

EQUIVALENT CIRCUIT

DC ELECTRICAL CHARACTERISTICS $T_A = +25^{\circ}C$, $V_{SS} = \pm 6V$, $V_{CM} = 0$ unless otherwise specified. Recommended operating supply voltage $V_S = \pm 6.0V$. Gain select pins connected together.

PARAMETER	TEST CONDITIONS		UNITS		
		Min	Тур	Max	UNITS
Differential voltage gain	$R_L = 2k\Omega$, $V_{OUT} = 3V p-p$	400	480	600	V/V
Bandwidth			25		MHz
Rise time	V _{OUT} = 1V p-p	1	15	20	ns
Propagation delay	V _{OUT} = 1V p-p		7.5	12	ns
Input resistance		3	14		kΩ
Input capacitance			2.5		ρF
Input offset current			0.3	3	μΑ
Input bias current			5	20	μΑ
Input noise voltage	BW 1kHz to 10MHz		4	1	nV/√Hz
Input voltage range		1	ļ	±1.0	V
Common mode rejection ratio	V _{CM} ± 1V, f <100kHz	60	93		dB
·	$V_{CM} \pm 1V$, $f = 5MHz$	1	87	1	dB
Supply voltage rejection ratio	$\Delta V_{S} = \pm 0.5V$	50	85		dB
	$V_{OUT} = 1V p-p; f = 100kHz$			1	
Channel separation	(output referenced) $R_L = 1k\Omega$	65	75	1	dB
Output offset voltage	R₁ = ∞		0.5	1.5	V
Gain select pins open	R _L = ∞		0.25	0.75	l v
Output common mode voltage	$R_1 = \infty$	2.4	3.1	3.4	l v
Output differential voltage swing	$R_1 = 2k\Omega$	3.0	4.0		l v
Output resistance	2	į.	20		Ω
Power supply current					
(Total for both sides)	R _L = ∞	1	35	44	mA
THE FOLLOWING SPECS APPLY OVE	R TEMPERATURE	0°			
Differential voltage gain	$R_L = 2k\Omega$, $V_{OUT} = 3V p-p$	350	430	600	V/V
Input resistance		1	11		kΩ
Input offset current		1	1	5	μA
Input bias current		1	l	30	μA
Input voltage range			1	±1.0	v
Common mode rejection ratio	$V_{CM} \pm 1V$, f <100kHz $R_S = \phi$	55			dB
Supply voltage rejection ratio	$\Delta V_S = \pm 0.5V$	50			dB
01	V _{OUT} = 1V p-p; f = 100kHz				
Channel separation	(output referenced) $R_L = 1k\Omega$		75		dB
Output offset voltage					
Gain select pins connected together	R _L = ∞		1	1.5	V
Gain select pins open	R _L = ∞	1	1	1.0	V
Output differential voltage swing	$R_L = 2k\Omega$	2.8	i		V
Power supply current	_				1
(Total for both sides)	R₁ = ∞			47	mA.

VIDEO AMPLIFIER NE5592

TYPICAL PERFORMANCE CHARACTERISTICS

COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY

OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY

CHANNEL SEPARATION AS A FUNCTION OF FREQUENCY

DIFFERENTIAL OVERDRIVE RECOVERY TIME

PULSE RESPONSE AS A FUNCTION OF SUPPLY VOLTAGE

PULSE RESPONSE AS A FUNCTION OF TEMPERATURE

VOLTAGE GAIN AS A FUNCTION OF TEMPERATURE

GAIN VS FREQUENCY AS A FUNCTION OF TEMPERATURE

VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE

VIDEO AMPLIFIER

TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

PHASE VS FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE

VOLTAGE GAIN AS A FUNCTION OF RADJ.

SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE

SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING AND SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE

INPUT RESISTANCE AS A FUNCTION OF TEMPERATURE

INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY

TEST CIRCUITS T_A = 25°C unless otherwise specified

VIDEO AMPLIFIER SE/NE592

DESCRIPTION

The SE/NE592 is a monolithic, two stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high pass, low pass, or band pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor.

FEATURES

- 120MHz bandwidth
- . Adjustable gains from 0 to 400
- Adjustable pass band
- . No frequency compensation required
- Wave shaping with minimal external components

APPLICATIONS

- · Floppy disk head amplifier
- Video amplifier
- Pulse amplifier in communications
- Magnetic memory
- · Video recorder systems

ABSOLUTE MAXIMUM RATINGS $T_A = +25$ °C unless otherwise specified.

SYMBOL AND PARAMETER	RATING	UNIT		
Supply voltage	±8	V		
Differential input voltage	±5	\ v		
Common mode		1		
Input voltage	±6	V		
Output current	10	mA		
Operating temperature range				
SE592	-55 to +125	°c		
NE592	0 to +70	·c		
Storage temperature range	-65 to +150	°C		
Power dissipation	500	mW		

PIN CONFIGURATION

EQUIVALENT CIRCUIT

Also N8, N14, D8 and D14 package parts available in "High" gain version by adding "H" before package designation, as: NE592HD8.

VIDEO AMPLIFIER SE/NE592

DC ELECTRICAL CHARACTERISTICS: $T_A = +25^{\circ}C$, $V_{SS} = \pm 6V$, $V_{CM} = 0$ unless otherwise specified. Recommended operating supply voltages $V_{CS} = \pm 6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

PARAMETER	TEST CONDITIONS		NE592			SE592		
		Min	Тур	Max	Min	Тур	Max	UNIT
Differential voltage gain, standard part Gain 1 ¹ Gain 2 ^{2,4}	$R_L = 2k\Omega$, $V_{OUT} = 3V$ p-p	250 80	400 100	600 120	300 90	400 100	500 110	V/V V/V
High gain part		400	500	600				V/V
Bandwidth Gain 1 ¹ Gain 2 ² . ⁴ Rise time Gain 1 ¹ Gain 2 ² . ⁴	V _{OUT} = 1V p-p		40 90 10.5 4.5	12		40 90 10.5 4.5	10	MHz MHz ns
Propagation delay Gain 1 ¹ Gain 2 ^{2,4}	V _{OUT} = 1V p-p		7.5 6.0	10		7.5 6.0	10	ns ns
Input resistance Gain 1 ¹ Gain 2 ² . ⁴ Input capacitance ² Input offset current Input bias current Input noise voltage Input voltage range	Gain 2 ⁴ BW 1kHz to 10MHz	10	4.0 30 2.0 0.4 9.0 12	5.0 30 ±1.0	20	4.0 30 2.0 0.4 9.0 12	3.0 20 ±1.0	kΩ kΩ pF μA μVrms V
Common mode rejection ratio Gain 2 ⁴ Gain 2 ⁴ Supply voltage rejection ratio Gain 2 ⁴	$V_{CM} \pm 1V$, f<100kHz $V_{CM} \pm 1V$, f = 5MHz $\Delta V_{S} = \pm 0.5V$	60	86 60 70		60 50	86 60 70		dB dB
Output offset voltage Gain 1 Gain 2 ⁴ Gain 3 ³ Output common mode voltage Output voltage swing differential Output resistance Power supply current	$R_{L} = \infty$ $R_{L} = \infty$ $R_{L} = \infty$ $R_{L} = \infty$ $R_{L} = 2k\Omega$ $R_{L} = \infty$	2.4 3.0	0.35 2.9 4.0 20 18	1.5 1.5 0.75 3.4	2.4 3.0	0.35 2.9 4.0 20 18	1.5 1.0 0.75 3.4	V V V Ω mA
THE FOLLOWING SPECS APPLY O	OVER TEMPERATURE	0°C ≤ T _A ≤ 70°C		-55°C ≤ T _A ≤ 125°C				
Differential voltage gain, standard part Gain 1 ¹ Gain 2 ^{2,4}	$H_L = 2k\Omega$, $V_{OUT} = 3V p-p$	250 80		600 120	200 80		600 120	V/V V/V
High gain part		400	500	600				V/V
Input resistance Gain 2 ^{2,4} Input offset current Input bias current Input voltage range		8.0 ± 1.0		6.0 40	8.0 ±1.0		5.0 40	kΩ μΑ μΑ V

^{1.} Gain select pins G_{1A} and G_{1B} connected together. 2. Gain select pins G_{2A} and G_{2B} connected together. 3. All gain select pins open.

^{4.} Applies to 14-pin version only.

DC ELECTRICAL CHARACTERISTICS: (cont.) $T_A = +25^{\circ}C$, $V_{SS} = \pm 6V$, $V_{CM} = 0$ unless otherwise specified. Recommended operating supply voltages $V_S = \pm 6.0V$. All specifications apply to both standard and high gain parts unless noted differently.

PARAMETER	TEST CONDITIONS	NE592			SE592			
		Min	Тур	Max	Min	Тур	Max	UNITS
THE FOLLOWING SPECS APPLY O	VER TEMPERATURE	0°C	< T _A <	70°C	- 55°C	< T _A <	125°C	
Common mode rejection ratio Gain 2 ⁴ Supply voltage rejection ratio Gain 2 ⁴	$V_{CM} \pm 1V$, f <100kHz $\Delta V_{S} = \pm 0.5V$	50 50			50 50			dB dB
Output offset voltage Gain 1 Gain 2 ⁴ Gain 3 ³ Output voltage swing differential Power supply current	$\begin{array}{ll} R_L = \infty \\ R_L = \infty \\ R_L = \infty \\ R_L = 2k\Omega \\ R_L = \infty \end{array}$	2.8		1.5 1.5 1.0	2.5		1.5 1.2 1.0	V V V V mA

NOTES:

Gain select pins G_{1A} and G_{1B} connected together.
 Gain select pins G_{2A} and G_{2B} connected together.

^{3.} All gain select pins open.

^{4.} Applies to 14-pin version only.

VIDEO AMPLIFIER

TYPICAL PERFORMANCE CHARACTERISTICS

VIDEO AMPLIFIER SE/NE592

TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

TEST CIRCUITS T_A = 25°C unless otherwise specified

TYPICAL APPLICATIONS

