NH0002/NH0002C current amplifier general description

The NH0002/NH0002C is a general purpose thick film hybrid current amplifier that is built on a single substrate. The circuit features:

■ High Input Impedance

400 k Ω

Low Output Impedance

 Ω

High Power Efficiency

- Low Harmonic Distortion
- DC to 30 MHz Bandwidth
- Output Voltage Swing that Approaches Supply Voltage
- 400 mA Pulsed Output Current
- Slew rate is typically 200V/μs
- Operation from ±5V to ±20V

These features make it ideal to integrate with an operational amplifier inside a closed loop configuration to increase current output. The symmetrical output portion of the circuit also provides a low output impedance for both the positive and negative slopes of output pulses.

The NH0002 is available in an 8-lead low-profile TO-5 header; the NH0002C is also available in an 8-lead TO-5, and a 10-pin molded dual-in-line package.

applications

- Line driver
- 30 MHz buffer.
- High speed D/A conversion
- Instrumentation buffer
- Precision current source

schematic and connection diagrams

typical applications

High Current Operational Amplifier

Line Drive

absolute maximum ratings

Supply Voltage ±22V **Power Dissipation Ambient** 600 mW

Input Voltage (Equal to Power Supply Voltage) -65°C to +150°C Storage Temperature Range

-55°C to +125°C **Operating Temperature Range** NH0002 0°C to +85°C NH0002C

Steady State Output Current ±100 mA ±400 mA

Pulsed Output Current (50 ms On/1 sec Off)

electrical characteristics (Note 1)

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Voltage Gain	$R_S = 10 \text{ k}\Omega, R_L = 1.0 \text{ k}\Omega$ $V_{IN} = 3.0 \text{ V}_{PP}, f = 1.0 \text{ kHz}$ $T_A = -55^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$.95	.97		
AC Current Gain	V _{IN} = 1.0 V _{rms} f = 1.0 kHz		40		A/mA
Input Impedance	$R_S = 200 \text{ k}\Omega, V_{IN} = 1.0 V_{rms},$ $f = 1.0 \text{ kHz}, R_L = 1.0 \text{ k}\Omega$	180	400 -	_	kΩ
Output Impedance	V_{IN} = 1.0 V_{rms} , f = 1.0 kHz R_L = 50 Ω , R_S = 10 k Ω	_	6	10	Ω
Output Voltage Swing	$R_L = 1.0 \text{ k}\Omega$, $f = 1.0 \text{ kHz}$	±10	±11	-	V
DC Output Offset Voltage	$R_S = 300\Omega$, $R_L = 1.0 \text{ k}\Omega$ $T_A = -55^{\circ}\text{C}$ to 125°C	_	±10	±30	mV
DC Input Offset Current	$R_S = 10 \text{ k}\Omega, R_L = 1.0 \text{ k}\Omega$ $T_A = -55^{\circ}\text{C to } 125^{\circ}\text{C}$	_	±6.0	±10	μΑ
Harmonic Distortion	V _{IN} = 5.0 V _{rms} , f = 1.0 kHz	_	0.1	_	%
Bandwidth	$V_{IN} = 1.0 V_{rms}$, $R_L = 50\Omega$, $f = 1 MHz$	30	50	* _	MHz
Positive Supply Current	$R_S = 10 \text{ k}\Omega$, $R_L = 1 \text{ k}\Omega$	_	+6.0	+10.0	mA
Negative Supply Current	$R_S = 10 \text{ k}\Omega$, $R_L = 1 \text{ k}\Omega$	_	-6.0	-10.0	mA

Note 1: Specification applies for $T_A = 25^{\circ}C$ with +12V on Pins 1 and 2; -12V on Pins 6 and 7 for the metal can package and +12V on Pins 1 and 2; -12V on Pins 4 and 5 for the dual-in-line package unless otherwise specified. The parameter guarantees for NH0002C apply over the temperature range of 0°C to +85°C, while parameters for the NH0002 are guaranteed over the temperature range -55°C to 125°C.

typical performance

Positive Pulse

Input Offset Current

