

Operational Amplifiers

NHOOO3/NHOOO3C wide bandwidth operational amplifier general description

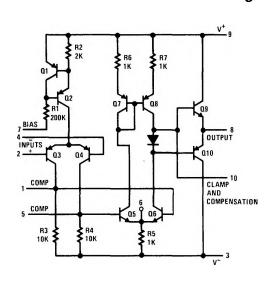
The NH0003/NH0003C is a general purpose operational amplifier which features: slewing rate up to 70 volts/µsec, a gain bandwidth of up to 300 MHz, and high output currents. Other features are:

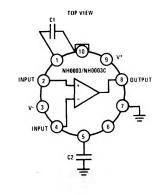
Large output swing

> ±10V into 100 Ω

load

■ High CMRR

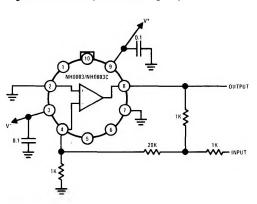

Typically > 90 dB


 Good large signal frequency response 50 kHz to 400 kHz depending on compensa-

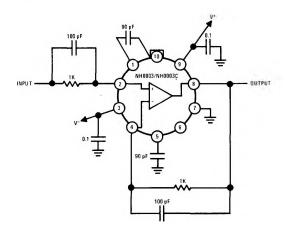
Very low offset voltage

Typically 0.4 mV

schematic and connection diagrams



Circuit Gain	C ₁	C ₂ pF	Slew Rate $R_L > 200\Omega$, $Vi\mu sec$	Full Output Frequency R _L 20012 V _{OUT} 110 V		
≥ 40	0	0	70	400		
≥ 10	5	30	30	350		
≥ 5	15	30	15	250 ≥ kH₂		
≥ 2	50	50	5	100		
≥ 1	90	90	2	50		


Typical Compensation

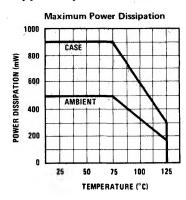
typical applications

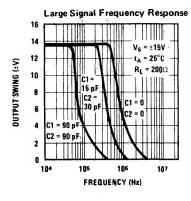
High Slew Rate Unity Gain Inverting Amplifier

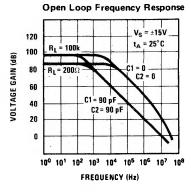
Unity Gain Follower

absolute maximum ratings

±20V Supply Voltage Power Dissipation See curve Differential Input Voltage ±7V Equal to supply Input Voltage Load Current 120 mA -55° C to $+125^{\circ}$ C Operating Temperature Range NH0003 NH0003C 0° C to $+70^{\circ}$ C Storage Temperature Range -65° C to $+150^{\circ}$ C 300°C Lead Temperature (Soldering, 10 sec)


electrical characteristics (Notes 1 & 2)


PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	R _S < 1k	,	0.4	3.0	m∨
Input Offset Current			0.02	0.2	μΑ
Input Bias Current		1	0.4	2.0	μΑ
Supply Current	V _S ±20V		1.2	3	mA
Voltage Gain	R _L = 100k, V _S = ±15V, V _{OUT} = ±10V	20	70		V/mV
Voltage Gain	$R_L = 2k$, $V_S = ±15V$, $V_{OUT} = ±10V$	15	40		V/mV
Voltage Gain	$R_L = 200\Omega$, $V_S = \pm 15V$, $V_{OUT} = \pm 10V$	5	15		V/mV
Output Voltage Swing	V _S ±15, R _L = 100Ω	± 10	±12		V
Input Resistance			100		k\$2
Average Temperature Coefficient of Offset Voltage	R _S < 5k		4		μV/C
Average Temperature Coefficient of Bias Current		-)(-	8		nA/°C
CMRR	$R_S < 1k$, $V_S = \pm V$, $V_{1N} = \pm 10V$	70	90		dB
PSRR	$R_S < 1k$, $V_S = \pm 15V$, $\Delta V = 5V$ to $20V$	70	90		dB
Equivalent Input Noise Voltage	$R_S = 1K$, f = 10 kHz to 100 kHz $V_S = \pm 15V$ dc		1.8		μVrms


Note 1. These specifications apply for Pin 7 grounded, for $\pm5V \le V_S \le \pm20V$, with capacitor C_1 = 90 pF from Pin 1 to Pin 10 and C_2 = 90 pF from Pin 5 to ground, over the specified operating temperature range, unless otherwise specified.

Note 2. Typical values are for t_{AMBIENT} = 25°C unless otherwise specified

typical performance

