Operational Amplifiers ## NH0020/NH0020C medium current operational amplifier ### general description The NH0020/NH0020C is a general purpose operational amplifier designed to source and sink 50 mA output currents. In addition to its high output capability, the NH0020/NH0020C exhibits excellent open loop gain, typically in excess of 100 dB. The parameters of the NH0020 are guaranteed over the temperature range of -55°C to $+125^{\circ}\text{C}$ and $\pm5\text{V} \leq \text{V}_{\text{S}} \leq \pm22\text{V}$, while those of the NH0020C are guaranteed over the temperature range of 0°C to 85°C and $\leq \pm5\text{V} \leq \text{V}_{\text{S}} \leq \pm18\text{V}$. Additional features include: Low offset voltage typically 1.0 mV at 25°C over the entire common mode voltage range. - Low offset current typically 10 nA at 25°C for the NH0020 and 30 nA for the NH0020C. - Offset voltage is adjustable to zero with a single potentiometer. - ±14V, 50 mA output capability. Output current capability, excellent input characteristics, and large open loop gain make the NH0020/NH0020C suitable for application in a wide variety of applications from precision do power supplies to precision medium power comparator. #### schematic and connection diagrams ### typical applications Offset Adjustment #### Unity Gain Frequency Compensation # absolute maximum ratings Supply Voltage NH0020 ±22V NH0020C ±18V **Power Dissipation** 1.5W Differential Input Voltage ±30V ±15V Input Voltage (Note 1) Continuous Output Short Circuit Duration -55°C to +125°C Operating Temperature Range NH0020 NH0020C 0°C to 85°C -65°C to +150°C Storage Temperature 300°C Lead Temperature (Soldering, 10 sec) #### electrical characteristics | PARAMETER | CONDITIONS | NH0020 | | | | NH0020C | | | | UNITS | |---------------------------------|--|-------------------|--------------|------------|------------|---------------|--------------|------------|------------|--------------| | | | TEMP °C | MIN | TYP | MAX | TEMP °C | MIN | TYP | MAX | ONITS | | Input Offset
Voltage | H _S ≤ 10k | 25
-55 to +125 | | 1.0
2.0 | 2.5
4.0 | 25
0 to 85 | | 1.0
3.0 | 6.0
7.5 | | | Input Offset
Current | | 25
-55 to +125 | | 10 | 50
100 | 25
0 to 85 | | 30 | 200
300 | nA
nA | | Input Bias
Current | | 25
-55 to +125 | | 60 | 250
500 | 25
0 to 85 | | 200 | 500
800 | nA
nA | | Supply Current | V _S = ±15V | 25 | | 3.5 | 4.5 | 25 | | 3.6 | 5.0 | mA | | Input Resistance | | 25 | 0.6 | 1.0 | | 25 | 0.3 | 1.0 | | MΩ | | Large Signal
Voltage Gain | $V_S = \pm 15V$, $R_L = 300\Omega$, $V_O = \pm 10V$
$V_S = \pm 15V$, $R_L = 300\Omega$, $V_O = \pm 10V$ | | 100
50 | 300 | | 25
0 to 85 | 50
30 | 150 | | V/mV
V/mV | | Output Voltage
Swing | V _S = ±15V, R _L = 300Ω | 25
-55 to +125 | 14.2
14.0 | 14.5 | | 25
0 to 85 | 14.0
13.5 | 14.2 | | v
v | | Output Short
Circuit Current | $V_S = \pm 15V$ $R_L = 0$ \$2 | 25 | | 100 | 130 | 25 | 25 | 120 | 140 | mA | | Input Voltage
Range | V _S = ±15V | -55 to +125 | ±12 | | | 0 to 85 | ±12 | | | v | | Common Mode
Rejection Ratio | R _S ≤ 10k | -55 to +125 | 90 | 96 | | 0 to 85 | 90 | 96 | | dB | | Power Supply
Rejection Ratio | R _S ≤ 10k | -55 to +125 | 90 | 96 | | 0 to 85 | 90 | 96 | - | dB | Note 1: For supply voltages less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage. Note 2: These specifications apply for $\pm 5V \le V_S \le \pm 22V$ for the NH0020, $\pm 5V \le V_S \le \pm 18V$ for the NH0020C, pin 9 grounded, and a 5000 pF capacitor between pins 2 and 3, unless otherwise specified.