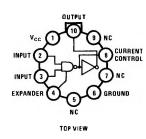


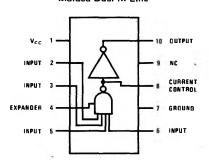
Current Drivers

NH0028C/NH0028CN hammer driver

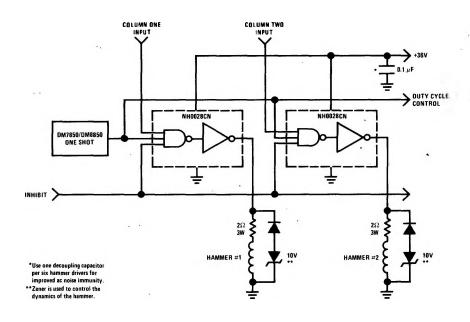
general description


The NH0028C/NH0028CN is a high current hammer driver designed for utilization in a wide variety of printer applications. The device is capable of driving 6 amp pulsed loads at duty cycles up to 10% (1 ms ON/10 ms OFF). The input is DTL/TTL compatible and requires only a single voltage supply in the range of 10V to 45V.

Additional features include:


- Low standby power: 45 mW at V_{CC} = 36V, 35 mW at V_{CC} = 28V.
- AND input with expander affords logic flexibility.
- Fast turn-on, typically 200 ns.

connection diagrams


Metal Can

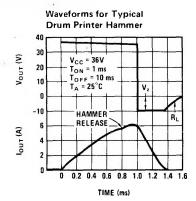
Molded Dual-In-Line

typical application

absolute maximum ratings

electrical characteristics (Note 1)

PARAMETER	CONDITIONS	MIN	TYP (Note 1)	MAX	UNITS
Logical "1" Input Voltage	V _{CC} = 10V to 45V	2.0			V
Logical "0" Input Voltage	V _{CC} = 10V to 45V			0.8	v
Logical "0" Input Current	V _{CC} = 45V, V _{IN} = 0.4V		0.8	1.0	mA
Logical "1" Input Current	V _{CC} = 45V, V _{IN} = 2.4V V _{CC} = 45V, V _{IN} = 5.5V		0.5	5.0 100.0	μ Α μ Α
Logical "1" Output Voltage	$V_{CC} = 45V, V_{IN} = 2.0V,$ $I_{OUT} = 1.6A$ $V_{CC} = 36V, V_{IN} = 2.0V,$	43.0	43.5		V
	1 _{OUT} = 5A (Note 2)	33.5	34.0		٧
Logical "0" Output Voltage	V _{CC} = 45V, R _L = 1k, V _{IN} = 0.8V		.020	100	v
OFF Power Supply Current	V _{CC} = 45V, V _{IN} = 0.0V	•	1.6	2.0	mA
Rise Time (10% to 90%)	V_{CC} = 45V, R _L = 39 Ω V _{IN} = 5.0V peak, PRF = 1 kHz		0.2		μς
Fall Time (90% to 10%)	V_{CC} = 45V, R _L = 39 Ω V _{IN} = 5.0V peak, PRF = 1 kHz		3.0		μs
T _{ON}	V_{CC} = 45V, R_L = 39 Ω V_{IN} = 5.0V peak, PRF = 1 kHz		0.4		μς
T _{OFF}	V_{CC} = 45V, R_L = 39 Ω V_{IN} = 5.0V peak, PRF = 1 kHz		7.0		μς


Note 1: These specifications apply for ambient temperatures from 0°C to 70°C unless otherwise specified. All typical values are for 25°C ambient. \rightarrow

Note 2: Measurement made at 1 ms ON and 10 ms OFF.

Note 3: Power ratings for the NH0028C are based on a maximum junction temperature of 175°C and a thermal resistance of 210°C/W.

Note 4: Power ratings for the NH0028CN are based on a maximum junction temperature of 175°C and a thermal resistance of 150°C/W.

typical performance characteristics

