4-Bit Dual-Supply Non-Inverting Level Translator

The NLSV4T3144 is a 4-bit configurable dual-supply bus buffer level translator. The input (IN_x_n) and output (OUT_x_n) ports are designed to track two different power supply rails, V_{CCA} and V_{CCB} respectively. Both supply rails are configurable from 1.6 V to 3.6 V allowing low-voltage translation from the input to the output port.

Features

- Wide V_{CCA} and V_{CCB} Operating Range: 1.6 V to 3.6 V
- High-Speed w/ Balanced Propagation Delay
- Inputs and Outputs have OVT Protection to 5.5 V
- Outputs at 3-State until Active V_{CCA} and V_{CCB} are Reached
- Power–Off Protection
- Ultra-Small Packaging: 1.7 mm x 2.0 mm UQFN-12
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

- Mobile Phones, PDAs, Other Portable Devices
- SPI[™] Bus Voltage Translation

Important Information

• ESD Protection for All Pins: HBM (Human Body Model) > 3000 V

ON Semiconductor®

www.onsemi.com

MU SUFFIX CASE 523AE

MARKING DIAGRAM

WG = Specific Device Code M = Date Code

= Pb–Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NLSV4T3144MUTAG	UQFN-12 (Pb-Free)	3000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Figure 2. Typical Application: SPI Bus Voltage Translator

PIN NAMES

Pins	Description
V _{CCA}	'A' DC Power Supply
V _{CCB}	'B' DC Power Supply
GND	Ground
IN_A1, IN_A2, IN_A3	Input (Referenced to V_{CCA})
IN_B4	Input (Referenced to V_{CCB})
OUT_B1, OUT_B2, OUT_B3	Output (Referenced to V _{CCB})
OUT_A4	Output (Referenced to V _{CCA})
ŌĒ	Output Enable (Referenced to V_{CCA})

TRUTH TABLE

	Inputs	Outputs
ŌĒ	IN_A1, IN_A2, IN_A3, IN_B4	OUT_B1, OUT_B2, OUT_B3, OUT_A4
Н	Х	3–State
L	L	L
	Н	Н

MAXIMUM RATINGS

Symbol	Parameter		Value	Condition	Unit
V_{CCA}, V_{CCB}	DC Supply Voltage, V _C	_{CA} ≤ V _{CCB}	-0.5 to +5.5		V
VI	DC Input Voltage	IN_x _n	-0.5 to +5.5		V
V _C	Control Input	OE	-0.5 to +5.5		V
Vo	DC Output Voltage	(Power Down) OUT_x _n	-0.5 to +5.5	$V_{CCA} = V_{CCB} = 0$	V
	(Active Mode) OUT_x _n		-0.5 to +5.5		
		(Tri-State Mode) OUT_xn	-0.5 to +5.5		
I _{IK}	DC Input Diode Current		-20	V _I < GND	mA
I _{OK}	DC Output Diode Curre	ent	-50	V _O < GND	mA
Ι _Ο	DC Output Source/Sink Current		±50		mA
I _{CCA} , I _{CCB}	DC Supply Current Per Supply Pin		±100		mA
I _{GND}	DC Ground Current per Ground Pin		±100		mA
T _{STG}	Storage Temperature		-65 to +150		°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V _{CCA} , V _{CCB}	Positive DC Supply Voltage, $V_{CCA} \le V_{CCB}$	1.6	3.6	V
VI	Bus Input Voltage	GND	3.6	V
V _C	Control Input OE	GND	3.6	V
V _{IO}	DC Output Voltage (Power Down) OUT_x _n	GND	3.6	V
	(Active Mode) OUT_x _n			
	(Tri-State Mode) OUT_x _n			
T _A	Operating Temperature Range	-40	+85	°C
$\Delta t / \Delta V$	Input Transition Rise or Rate V _I , from 30% to 70% of V _{CCA} and V _{CCB} ; V _{CCA} = V _{CCB} = 3.3 V \pm 0.3 V	0	10	ns

DC ELECTRICAL CHARACTERISTICS

					–40°C to	o + 85°C	
Symbol	Parameter	Test Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Мах	Unit
V _{IH}	Input HIGH Voltage		2.7 – 3.6	$\geq V_{CCA}$	2.0	_	V
(IN_A1, IN_A2,			2.3 - 2.7		1.6	_	-
IN_A3, \overline{OE})			1.6 –2.3		0.65 * V _{CCA}	-	
VIH	Input HIGH Voltage		$\leq V_{CCB}$	2.7 – 3.6	2.0	-	V
(IN_B4)				2.3 – 2.7	1.6	-	
				1.6 –2.3	0.65 * V _{CCB}	-	
VIL	Input LOW Voltage		2.7 – 3.6	$\geq V_{CCA}$	-	0.8	V
(IN_A1, IN_A2,			2.3 – 2.7		_	0.7	
N_A3, OE)			1.6 –2.3		-	0.35 * V _{CCA}	
VIL	Input LOW Voltage		$\leq V_{CCB}$	2.7 – 3.6	-	0.8	V
(IN_B4)				2.3 – 2.7	-	0.7	
				1.6 –2.3	-	0.35 * V _{CCB}	
V _{OH}	Output HIGH Voltage	I_{OH} = -100 μ A; V_I = V_{IH}	$\leq V_{CCB}$	1.6 – 3.6	$V_{CCB} - 0.2$	_	V
(OUT_B1, OUT_B2,		$I_{OH} = -6 \text{ mA}; V_I = V_{IH}$	1.6	1.6	1.25	-	
OUT_B3)			2.3	2.3	2.0	-	
		$I_{OH} = -12 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.8	-	
			2.7	2.7	2.2	-	
		$I_{OH} = -18 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.7	-	
			3.0	3.0	2.4	_	
		$I_{OH} = -24 \text{ mA}; V_I = V_{IH}$	3.0	3.0	2.2	-	
V _{OH}	Output HIGH Voltage	$I_{OH} = -100 \ \mu A; \ V_I = V_{IH}$	1.6 - 3.6	$\geq V_{CCA}$	V _{CCA} – 0.2	-	V
(OUT_A4)		$I_{OH} = -6 \text{ mA}; V_I = V_{IH}$	1.6	1.6	1.25	-	
			2.3	2.3	2.0	-	
		$I_{OH} = -12 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.8	_	
			2.7	2.7	2.2	-	
		$I_{OH} = -18 \text{ mA}; V_I = V_{IH}$	2.3	2.3	1.7	-	
			3.0	3.0	2.4	-	
		$I_{OH} = -24 \text{ mA}; V_I = V_{IH}$	3.0	3.0	2.2	-	
V _{OL}	Output LOW Voltage	I_{OL} = 100 μ A; V_I = V_{IH}	$\leq V_{CCB}$	1.6 – 3.6	-	0.2	V
(OUT_B1, OUT_B2,		$I_{OL} = 6 \text{ mA}; V_I = V_{IH}$	1.6	1.6	-	0.3	
OUT_B3)		I_{OL} = 12 mA; V_I = V_{IH}	2.3	2.3	-	0.4	
			2.7	2.7	-	0.4	
		I_{OL} = 18 mA; V_I = V_{IH}	2.3	2.3	-	0.6	
			3.0	3.0	-	0.5	
		I_{OL} = 24 mA; V_I = V_{IH}	3.0	3.0	-	0.6	
V _{OL}	Output LOW Voltage	I_{OL} = 100 μ A; V_I = V_{IH}	1.6 – 3.6	$\geq V_{CCA}$	_	0.2	V
(OUT_A4)		$I_{OL} = 6 \text{ mA}; V_I = V_{IH}$	1.6	1.6	-	0.3	
		I_{OL} = 12 mA; V_I = V_{IH}	2.3	2.3	-	0.4	
			2.7	2.7	-	0.4	
		I_{OL} = 18 mA; $V_I = V_{IH}$	2.3	2.3	-	0.6	
			3.0	3.0	-	0.5	
		$I_{OL} = 24 \text{ mA}; V_I = V_{IH}$	3.0	3.0	_	0.6	1

DC ELECTRICAL CHARACTERISTICS

					–40°C t	o + 85°C	
Symbol	Parameter	Test Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Max	Unit
l _{IN}	Input Leakage Current		≤ V _{CCB}	1.6 - 3.6	-1.0	+1.0	μΑ
I _{OZ}	I/O Tri – State Output Leakage Current	TA = 25°C, $\overline{OE} = V_{CCA}$	≤ V _{CCB}	1.6 – 3.6	-	1.0	μΑ
ICCA	Quiescent Supply Current		≤ V _{CCB}	1.6 – 3.6	-	3.0	μΑ
Іссв	Quiescent Supply Current		≤ V _{CCB}	1.6 – 3.6	-	3.0	μΑ
I _{CCA} + I _{CCB}	Quiescent Supply Current		≤ V _{CCB}	1.6 – 3.6	_	6.0	μΑ

NOTE: Connect ground before applying supply voltage V_{CCA} or V_{CCB}. This device is designed with the feature that the power–up sequence of V_{CCA} and V_{CCB} will not damage the IC.

AC ELECTRICAL CHARACTERISTICS

					–40°C t	o +85°C			
					V _{CC}	_B (V)			
			3	.6	2	.8	1	.6	
Symbol	Parameter	V _{CCA} (V)	Min	Max	Min	Мах	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation	3.6		3			•		ns
	Delay,	2.8		3.1		3.3			
	Input to Output	1.6		4.3		4.5		6.1	
t _{PZH} , t _{PZL}	Output Enable,	3.6		8.7					ns
	OE to Output	2.8		10.3		10.7			
		1.6		17.2		18		20	
t _{PHZ} , t _{PLZ}	Output	3.6		7.8					ns
	Disable,	2.8		8.2		8.4			
	OE to Output	1.6		9.5		9.8		10.5	
t _{OSHL} ,	Output to Output Skew	3.6		0.25			-		ns
tOSLH		2.8		0.25		0.25			
		1.6		0.25		0.25		0.25	

NOTE: Propagation delays defined per Figure 3.

CAPACITANCE

Symbol	Parameter	Test Conditions	Typ (Note 1)	Unit
Cl	Control Pin (OE) Input Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or $V_{CCA/B}$	3.5	pF
C _{IN}	Input Pin Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or $V_{CCA/B}$	5.0	pF
C _{OUT}	Output Pin Capacitance	V_{CCA} = V_{CCB} = 3.3 V, V_{I} = 0 V or $V_{CCA/B}$	5.0	pF
C _{PD}	Power Dissipation Capacitance	V_{CCA} = V_{CC2} = 3.3 V, V_{I} = 0 V or 3.3 V, f = 10 MHz	10	pF

1. Typical values are at $T_A = +25^{\circ}C$.

Figure 3. AC (Propagation Delay) Test Circuit

Test	Switch			
t _{PLH} , t _{PHL}	OPEN			
t _{PLZ} , t _{PZL}	V_{CCO} x 2 at V_{CCO} = 3.0 V – 3.6 V, 2.3 V – 2.7 V, 1.65 V – 1.95 V, 1.4 V – 1.6 V			
t _{PHZ} , t _{PZH}	GND			
C_L = 15 pF or equivalent (includes probe and jig capacitance) R_L = 2 k Ω or equivalent				
Z_{OUT} of pulse generator = 50 Ω				
V _{CCO} is the supply voltage refere	enced to by the output being tested			

Waveform 1 – Propagation Delays

 t_{R} = t_{F} = 2.0 ns, 10% to 90%; f = 1 MHz; t_{W} = 500 ns

Waveform 2 – Output Enable and Disable Times $t_R = t_F = 2.0 \text{ ns}, 10\% \text{ to } 90\%; f = 1 \text{ MHz}; t_W = 500 \text{ ns}$

Figure 4. AC (Propagation Delay) Test Circuit Waveforms

Symbol	Input Pin Output Pin
V _m	V _{CCX} /2
V _X	V _{OL} x 0.1
V _Y	V _{OH} x 0.9

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and **OD** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemic.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC products are not designed, intended, or authorized for use as components insystems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and easonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC as negaring the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative