

International Airport Industrial Park • Mailing Address: FOBox11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burn-brown.com/ • FAXLine: (800) 548-6133 (US/CanadaOnly) • Cable: BERCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

© 1996 Burr-Brown Corporation

PDS-1327B

SPECIFICATIONS: $V_s = +5V$

At T_A = +25°C, V_S = +5V, R_L = 10k Ω connected to V_S/2, unless otherwise noted.

		OPA237UA, NA OPA2237UA, EA OPA4237UA			
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage vs Temperature ⁽¹⁾ vs Power Supply (PSRR) Channel Separation (dual and quad)	V_{CM} = 2.5V Specified Temperature Range V_{S} = +2.7V to +36V		±250 ±2 10 0.5	±750 ±5 30	μV μV/∘C μV/V μV/V
INPUT BIAS CURRENT Input Bias Current ⁽²⁾ Input Offset Current	$V_{CM} = 2.5V$ $V_{CM} = 2.5V$		-10 ±0.5	-40 ±10	nA nA
NOISE Input Voltage Noise, f = 0.1 to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz			1 28 60		μVp-p nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	$V_{CM} = -0.2V$ to 3.5V	-0.2 78	86	(V+) –1.5	V dB
INPUT IMPEDANCE Differential Common-Mode			5 • 10 ⁶ 4 5 • 10 ⁹ 2		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_{O} = 0.5V$ to 4V	80	88		dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.1% 0.01%	G = 1 G = -1, 3V Step, C _L = 100pF G = -1, 3V Step, C _L = 100pF		1.4 0.5 11 16		MHz V/μs μs μs
OUTPUT Voltage Output, Positive Negative Positive Negative Negative Negative Short-Circuit Current Capacitive Load Drive (stable operation)	$\begin{split} R_L &= 100 k\Omega \text{ to Ground} \\ R_L &= 100 k\Omega \text{ to Ground} \\ R_L &= 100 k\Omega \text{ to } 2.5 V \\ R_L &= 100 k\Omega \text{ to } 2.5 V \\ R_L &= 10 k\Omega \text{ to } 2.5 V \\ R_L &= 10 k\Omega \text{ to } 2.5 V \end{split}$	(V+) -1 0.01 (V+) -1 0.12 (V+) -1 0.5	(V+) -0.75 0.001 (V+) -0.75 0.04 (V+) -0.75 0.35 -10/+4 ee Typical Curv	es	V V V V V mA
POWER SUPPLY Specified Operating Voltage Operating Range Quiescent Current (per amplifier)		+2.7	+5 170	+36 350	V V μA
TEMPERATURE RANGE Specified Range Operating Range Storage Thermal Persistance A		40 55 55		+85 +125 +125	℃ ℃ ℃
Thermal Resistance, θ _{JA} 5-Lead SOT-23-5 MSOP-8 Surface-Mount SSOP-16 Surface-Mount SO-8 Surface-Mount			200 150 150 150		°C/W °C/W °C/W °C/W

NOTES: (1) Guaranteed by wafer-level test to 95% confidence. (2) Positive conventional current flows into the input terminals.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS: $V_s = +2.7V$

At T_A = +25°C, V_S = +2.7V, R_L = 10k Ω connected to V_S/2, unless otherwise noted.

		OPA237UA, NA OPA2237UA, EA OPA4237UA			
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage vs Temperature ⁽¹⁾ vs Power Supply (PSRR) Channel Separation (dual and quad)	$V_{CM} = 1V$ Specified Temperature Range $V_{S} = +2.7V$ to $+36V$		±250 ±2 10 0.5	±750 ±5 30	μV μV/°C μV/V μV/V
INPUT BIAS CURRENT Input Bias Current ⁽²⁾ Input Offset Current	$V_{CM} = 1V$ $V_{CM} = 1V$		-10 ±0.5	-40 ±10	nA nA
NOISE Input Voltage Noise, f = 0.1 to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz			1 28 60		μVp-p nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	$V_{CM} = -0.2V$ to 1.2V	-0.2 75	85	(V+) –1.5	V dB
INPUT IMPEDANCE Differential Common-Mode			5 • 10 ⁶ 4 5 • 10 ⁹ 2		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain	V _O = 0.5V to 1.7V	80	88		dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.1% 0.01%	G = 1 G = -1, 1V Step, C _L = 100pF G = -1, 1V Step, C _L = 100pF		1.2 0.5 5 8		MHz V/μs μs μs
OUTPUT Voltage Output, Positive Negative Positive Negative Negative Short-Circuit Current Capacitive Load Drive (stable operation)	$\label{eq:RL} \begin{array}{l} R_L = 100 k\Omega \text{ to Ground} \\ R_L = 100 k\Omega \text{ to Ground} \\ R_L = 100 k\Omega \text{ to } 1.35 \text{V} \\ R_L = 100 k\Omega \text{ to } 1.35 \text{V} \\ R_L = 10 k\Omega \text{ to } 1.35 \text{V} \\ R_L = 10 k\Omega \text{ to } 1.35 \text{V} \\ R_L = 10 k\Omega \text{ to } 1.35 \text{V} \end{array}$	(V+) -1 0.01 (V+) -1 0.06 (V+) -1 0.3	(V+) -0.75 0.001 (V+) -0.75 0.02 (V+) -0.75 0.2 -5/+3.5 ee Typical Curv	es	V V V V V MA
POWER SUPPLY Specified Operating Voltage Operating Range Quiescent Current (per amplifier)		+2.7	+2.7 160	+36 350	V V μA
TEMPERATURE RANGE Specified Range Operating Range Storage Thermal Resistance, θ_{IA}		40 55 55		+85 +125 +125	℃ ℃ ℃
5-Lead SOT-23-5 MSOP-8 Surface-Mount SSOP-16 Surface-Mount SO-8 Surface-Mount			200 150 150 150		°C/W °C/W °C/W °C/W

NOTES: (1) Guaranteed by wafer-level test to 95% confidence. (2) Positive conventional current flows into the input terminals.

SPECIFICATIONS: $V_s = \pm 15V$

At T_A = +25°C, V_S = $\pm 15V,$ R_L = 10k\Omega connected to V_S/2, unless otherwise noted.

		OPA237UA, NA OPA2237UA, EA OPA4237UA			
PARAMETER	CONDITION	MIN	TYP	MAX	UNITS
OFFSET VOLTAGE Input Offset Voltage vs Temperature ⁽¹⁾ vs Power Supply (PSRR) Channel Separation (dual and quad)	$V_{CM} = 0V$ Specified Temperature Range $V_{S} = \pm 1.35V$ to $\pm 18V$		±350 ±2.5 10 0.5	±950 ±7 30	μV μV/°C μV/ν μV/ν
INPUT BIAS CURRENT Input Bias Current ⁽²⁾ Input Offset Current	$V_{CM} = 0V$ $V_{CM} = 0V$		-8.5 ±0.5	-40 ±10	nA nA
NOISE Input Voltage Noise, f = 0.1 to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz			1 28 60		μVp-p nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection	V _{CM} = -15V to 13.5V	(V–) –0.2 80	90	(V+) –1.5	V dB
INPUT IMPEDANCE Differential Common-Mode			5 • 10 ⁶ 4 5 • 10 ⁹ 2		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain	$V_{\rm O} = -14V$ to 13.8V	80	88		dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Settling Time: 0.1% 0.01%	G = 1 $G = -1, 10V$ Step, $C_L = 100pF$ $G = -1, 10V$ Step, $C_L = 100pF$		1.5 0.5 18 21		MHz V/μs μs μs
OUTPUT Voltage Output, Positive Negative Positive Negative Short-Circuit Current Capacitive Load Drive (stable operation)	$R_{L} = 100k\Omega$ $R_{L} = 100k\Omega$ $R_{L} = 10k\Omega$ $R_{L} = 10k\Omega$	(V+) -1.2 (V-) +0.5 (V+) -1.2 (V-) +1	(V+) −0.9 (V−) +0.3 (V+) −0.9 (V−) +0.85 −8/+4.5 see Typical Curv	es	V V V MA
POWER SUPPLY Specified Operating Voltage Operating Range Quiescent Current (per amplifier)		±1.35	±15 ±200	±18 ±475	V V μA
TEMPERATURE RANGE Specified Range Operating Range Storage Thermal Resistance, θ_{IA}		-40 -55 -55		+85 +125 +125	ဂံ ဂံ ဂံ
S-Lead SOT-23-5 MSOP-8 Surface-Mount SSOP-16 Surface-Mount SO-8 Surface-Mount			200 150 150 150		°C/W °C/W °C/W °C/W

NOTES: (1) Guaranteed by wafer-level test to 95% confidence. (2) Positive conventional current flows into the input terminals.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V+ to V	
Input Voltage	
Output Short-Circuit ⁽¹⁾	
Operating Temperature	
Storage Temperature	–55°C to +125°C
Junction Temperature	
Lead Temperature (soldering, 10s)	

NOTE: (1) Short circuit to ground, one amplifier per package.

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽²⁾
Single OPA237NA " OPA237UA	5-Lead SOT-23-5 " SO-8 Surface-Mount	331 " 182	40°C to +85°C " 40°C to +85°C	A37A " OPA237UA	OPA237NA-250 OPA237NA-3K OPA237UA
Dual OPA2237EA " OPA2237UA	MSOP-8 Surface-Mount " SO-8 Surface-Mount	337 " 182	40°C to +85°C " 40°C to +85°C	B37A " OPA2237UA	OPA2237EA-250 OPA2237EA-2500 OPA2237UA
Quad OPA4237UA "	SSOP-16 Surface-Mount	322 "	–40°C to +85°C "	OPA4237UA "	OPA4237UA-250 OPA4237UA-2500

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Models with -250, -2500, and -3K are available only in Tape and Reel in the quantity indicated (e.g., -250 indicates 250 devices per reel). Ordering 3000 pieces of "OPA237NA-3K" will get a single 3000 piece Tape and Reel. SO-8 models are available in tubes or Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

At T_A = +25°C and R_L = 10k $\Omega,$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^{\circ}C$ and $R_L = 10k\Omega$, unless otherwise noted.

Offset Voltage (µV)

OPA237, 2237, 4237

OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION

OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION 12 $V_{S} = \pm 15V$ Typical production distribution of packaged 10 units. Single, dual, Percent of Amplifiers (%) and quad units included. 8 6 4 0.2% 0.4% 2 0.4% 0 0.5 1.5 2 2.5 с 3.5 4 4.5 S 5.5 ဖ 6.5 7.5 œ 2 Offset Voltage Drift (µV/°C)

TYPICAL PERFORMANCE CURVES (CONT)

At T_A = +25°C and R_L = 10k $\Omega,$ unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^{\circ}C$ and $R_L = 10k\Omega$, unless otherwise noted.

SHORT-CIRCUIT CURRENT vs TEMPERATURE

APPLICATIONS INFORMATION

OPA237 series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. Power supply pins should be bypassed with 10nF ceramic capacitors.

OPERATING VOLTAGE

OPA237 series op amps operate from single (+2.7V to +36V) or dual (\pm 1.35V to \pm 18V) supplies with excellent performance. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage are shown in typical performance curves. Specifications are production tested with +2.7V, +5V, and \pm 15V supplies.

OUTPUT CURRENT AND STABILITY

OPA237 series op amps can drive large capacitive loads. However, under certain limited output conditions any op amp may become unstable. Figure 1 shows the region where the OPA237 has a potential for instability. These load conditions are rarely encountered, especially for single supply applications. For example, take the case when a +5V supply with a 10k Ω load to V_S/2 is used. OPA237 series op amps remain stable with capacitive loads up to 4,000pF, if sinking current and up to 10,000pF, if sourcing current. Furthermore, in single supply applications where the load is connected to ground, the op amp is only sourcing current, and as shown in Figure 1, can drive 10,000pF with output currents up to 1.5mA.

FIGURE 1. Stability-Capacitive Load vs Output Current.

FIGURE 2. Low and High-Side Battery Current Sensing.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated