

VB100

HIGH VOLTAGE DUTY CYCLE CONTROLLER

ADVANCE DATA

- INTEGRATED 450V POWER DARLINGTON
- OUTPUT CURRENT UP TO 5A
- HIGH IMPEDANCE DIFFERENTIAL INPUTS
- PROGRAMMABLE DRIVER CURRENT
- DUTY CYCLE CONTROL LINEARITY WITHIN 1.5%
- SWITCHING FREQUENCY UP TO 100 kHz
- THERMAL PROTECTION
- INTEGRATED PROTECTION AT
 COMPARATOR INPUTS
- MINIMUM EXTERNAL COMPONENT COUNT

The VB100 is a monolithic integrated circuit which acts as a fully independent duty cycle controller with high voltage, high current open collector darlington output.

It is made using the innovative VI Power M1 technology merging a high voltage vertical discrete Darlington transistor together with bipolar control circuitry. The VB100 is mainly intended as a D.C. motor and high voltage inductive load driver. It is able to adjust the output voltage duty cycle as a function of the input control voltage, at a switching frequency set by an internal stable sawtooh generator.

Built in thermal shut down switches off the power Darlington whenever the junction temperature exceeds an internally set value, typically 150°C with a 5V supply.

TEST AND APPLICATION CIRCUIT

September 1988

This is advanced information on a new product in development or undergoing evaluation. Details are subject to change without notice.

VB100

ABSOLUTE MAXIMUM RATINGS

V _{CE}	Power Darlington collector voltage	450	v
I _C	Power Darlington collector current	8	А
VD	Driver stage supply voltage	15	v
vs	Control stage supply voltage	15	v
I _D	Driver stage current	350	mA
V_{IN}, V_{NI}	Comparator input voltage	V _S to -10	v
P _{tot}	Power dissipation	internally limited	
Top	Junction operating temperature	– 45 to 150	°C
T _{stg}	Storage temperature	– 55 to 150	°C

THERMAL DATA

R _{thj - case} Thermal resistance junction-case	max	3.0	°C/W

CONNECTION DIAGRAM (Top view)

PIN FUNCTION

N°	NAME	FUNCTION
1	V _{E1} High voltage Darlington emitter	Output stage ground n.1. It must be short circuited with V_{E2} ; if no current sensing is used, a filtering capacitor must be provided between this pin and the high voltage supply. If current sensing is required, a shunt resistor can be connected between pin V_{E1} and V_{E2} and power ground and the filtering capacitor must be connected between ground and high voltage supply.
2	V _{SN1} Signal negative supply voltage	This pin is connected to the PWM ground and to the control circuit substrate. Supply range is from 0 to $-5V$. The applied negative supply voltage must be the most negative voltage of the device and must be the same voltage of pin $V_{\rm SN2}$.
3	V _{SN2} High current negative supply voltage	This pin is connected to the driver ground. Supply range is from 0 to $-5V$. An applied negative supply, speeds-up the output Darlington.
4	V _D Driver stage supply voltage	This pin supplies the base current for the darlington driver during t_{ON} (output darlington on-time) $I_{D (on)} = (V_S - V_{D (sat)})/R_D.$
5	V _S Control circuit power supply	Supply voltage input. Being the internal reference voltage taken from V_S a 5V $\pm 5\%$ D.C. supply is required.
6	V _C High voltage output col- lector	This pin is internally connected to package header. It is the high voltage open collector output.
7	V _{IN} Inverting input	Input of the PWM comparator. A D.C. value between $V_{\rm CHL}$ and $V_{\rm CHH}$ sets the output duty cycle from minimum to maximum value.
8	V _{CH} Non inverting input	Non inverting input of the PWM comparator and external capacitance pin. The capacitance C_{EXT} (togheter with R_{EXT}) fixes the sawtooth generator frequency (f_{osc}). A low leakage capacitance is necessary for a linear operation. The relationship between frequency and C_{EXT} R_{EXT} is: $f_{osc} = 1.1/(R_{EXT} \times C_{EXT})$
9	V _R Biasing Resistor	It fixes the current I_{ch} of the current generator which changes according to the following relation: $I_{ch} = 0.56 \times V_S/R_{EXT}$
10	GND Analog ground	It is the control circuit ground: for a reliable circuit operation only few millivolt drop (< 10mV) are allowed between this pin and C_{EXT} , R_{EXT} common point.
11	V _{E2} High voltage darlington emitter	Output stage ground n 2. It must be short circuited with V_{E1} ; if no current sensing is used, a filtering capacitor must be provided between this pin and the high voltage supply. If current sensing is required, a shunt resistor can be connected between pins V_{E1} and V_{E2} and power ground and a filtering capacitor must be connected between pins very be connected between power ground and high voltage supply.

SGS-THOMSON MICROELECTRONICS **ELECTRICAL CHARACTERISTICS:** $V_S = 5V$; $V_{CC} = 300V$; $V_A = 2V$; $V_B = 0V$; $R_{IN} = 10k\Omega$; $R_{EXT} = 50K\Omega$; $R_{CC} = 88\Omega$; $R_D = 330\Omega$; $R_{CH} = 100\Omega$; $T_C = T_{case} = 25^{\circ}C$ See fig. 1. - unless otherwise specified.

Parameters Test Conditions		tions	Min.	Тур.	Max.	Unit	
V _{CE}	Voltage between pins 6 and 1			450			v
I _{C (leak)}	High voltage collector leakage current	V _{CC} = 350 V				1	mA
V _{CE (sat)}	Saturation voltage of the output Darlington (between pins 6 and 1)	V _B = 2 V I _C = 3 A I _C = 5 A	V _A = 0 I _D ≈ 150 mA I _D ≈ 250 mA		2.5 2.7	2.9 3.3	v v
V _{D (sat)}	Saturation voltage between pins 4 and 1	V _B = 2 V I _D = 50 mA	$V_A = 0$ $I_C = 2A$		2.8	3.5	v
v _s	Control circuit power supply			4.75	5.0	5.25	v
I _{S off}	Control circuit current			20	30	45	mA
I _{S on}	Control circut current	V _B = 2 V	V _A = 0	2.5	6	10	mA
V _{inTHH}	PWM comparator high threshold	$V_B = 2 V$ $T_C = -40 \text{ to } 130^{\circ}\text{C}$ $V_A = 0 \rightarrow 3 V _f$ (see fig.	V _C = 50 V 2)	0		120	mV
VinTHL	PWM comparator low threshold	$V_{B} = 2 V$ $T_{C} = -40 \text{ to } 130^{\circ}\text{C}$ $V_{A} = 3 V \rightarrow 0 $ (see fig.	V _C ≈ 50 V 2)	100		260	mV
V _{inTH (hyst.)}	PWM comparator hysteresis	$V_B = 2 V$ $T_C = -40 \text{ to } 130^{\circ}\text{C}$ (see fig.	V _C = 50 V 2)	50		250	mV
I _{IN}	PWM comparator input bias current	$V_B = 2 V$ $T_C = -40 \text{ to } 130^{\circ}\text{C}$	V _C = 0.3 V		1	10	μA
V _{CHH}	High level threshold sawtooth generator	$V_A = 0 V \rightarrow 3.2 V _f$	V _B = 0.3 V	2.45	2.55	2.8	v
V _{CHL}	Low level threshold sawtooth generator	$V_A = 3.2 V \rightarrow 0 V$		0.4	0.5	0.7	v
I _{CH} - I _R I _R	External capacitor charging current, pin 8 versus I _R , pin 9	I _R = 50 to 110 μA V _A = 1 V	V _B = 0.3 V	-7		+7	%

ELECTRICAL CHARACTERISTICS:

	Parameters	Test	Conditions	Min.	Тур.	Max.	Unit
$\frac{I_{CH}}{T} \times \frac{1}{I_{CH}}$	Capacitor charging current change with temperature (pin 8)	$V_{A} = 1 V$ $I_{R} = 100 \mu A$	$V_{B} = 0.3 V$ $T_{C} = -40 \text{ to } 130^{\circ}\text{C}$			300	ppm °C
V _R	Reference bias voltage pin 11	l _R = 100 μA		2.7	2.8	2.92	v
t _r	Rise time of the Darlington collector current, I_C (see fig. 3)	I _D = 150 mA	I _C = 3 A		0.25		μS
t _s	Storage time of the Darlington collector current, I _C (see fig. 3)	I _C = 3 A V _{SN} = -5 V V _{SN} = 0 V	I _D = 150 mA		1.5 8.0		μS μS
t _f	Fall time of the Darlington collector current, I _C (see fig. 3)	$I_{C} = 3 A$ $V_{SN} = -5 V$ $V_{SN} = 0 V$	I _D = 150 mA		0.2 1.0		μS μS
t _{ON} (min)	Minimum duration of the Darlington collector current, I_C (see fig. 3)	$I_{C} = 3 A$ $V_{SN} = -5 V$ $V_{SN} = 0 V$	I _D = 150 mA		2.0 10.0		μs μs

 $I_{CH}^{\star} = I_{CH} (130^{\circ}C) - I_{CH} (-40^{\circ}C)$

N.B.* pulsed operation: $t_{rep} = 10 \text{ ms}$ $t_{ON} = 100 \mu \text{s}$

Fig. 1 Test Circuit

V_{CE} OFF V_{InTM(hist)} V_{LINTM(hist)} V_{INTM(hist)} V_{INTM(hist)} V_{INTM(hist)} V_{IN}V_{LH} SC-0251/2</sub>

Fig. 2 Comparator threshold hysteresis

Fig. 3 Switching waveforms

Fig. 4 Switching waveforms

7/7

APPLICATION INFORMATION

The VB100 is mainly intended as a quarter bridge controller. The sawtooth generator frequency is set by two external components, R_{FXT} and c_{FXT} :

$$f_{osc} = 1.1/(R_{EXT} \times C_{EXT})$$

in the ranges:

23.3 kΩ	< R _{EXT}	$<$ 100 k Ω
400pF	< C _{EXT}	$<$ 200 μ F
0.5 Hz	< f _{osc.}	< 100kHz

The input voltage V_{IN} sets the duration of t_{ON} for

the output stage. As V_{IN} increases t_{ON} increases following the relationship:

 $t_{ON} = t_s + t_f + t_r + 0.91 \times \frac{R_{EXT.} \times C_{EXT.}}{(V_{CHH} - V_{CHL})} \times V_{IN}$ in the range:

If an inductive load is used, it is necessary to provide a current limiting circuit. The device can form part of a closed loop control by just adding a few external components; fig. 5 shows a typical application example.

Fig. 5 Application Circuit

R ₁ = 100	$R_5 = 100 \text{ k}\Omega$	$R_9 = 50 k\Omega$	C ₁ = 1 nF
$R_2 = 33 \Omega$	$R_6 = 1.8 \text{ k}\Omega$	$R_{10} = 3.3 \ k\Omega$	$C_2 = 1 \text{ nF}$
$R_3 = 1 k\Omega$	$R_7 = 2 k\Omega$	$R_{11} = 4.7 \ k\Omega$	$C_3 = 33 \text{ nF}$
$R_4 = 0.15 \Omega$	R ₈ = 100 kΩ	$R_{EXT} = 50 k\Omega$	$C_{EXT} = 1.8 \text{ nF}$

SGS-THOMSON