Z86E03/E06

CMOS Z8® OTP MICROCONTROLLERS

FEATURES

ROM Part (Kbytes		RAM* (Kbytes)	SPI		
Z86E03	512	61	No	8	
Z86E06	1	125	Yes	12	

*General-Purpose

- 18-Pin DIP, WIN, and SOIC Packages
- 4.5- to 5.5-Volt Operating Range
- 0°C to +70°C Temperature Range

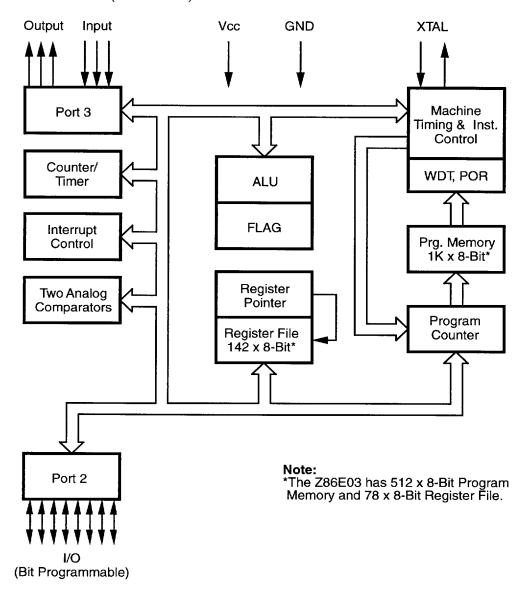
- Low-Power Consumption
- Expanded Register File (ERF)
- 14 Input/Output Lines
- Serial Peripheral Interface (SPI) (Z86E06 Only)
- Software Watch-Dog Timer (WDT)
- Power-On Reset (POR)

GENERAL DESCRIPTION

The Z86E03/E06 are One-Time Programmable (OTP) members of the Z8® microcontroller family allowing easy software development, debug, and prototyping for small production runs that are not economically desirable with a masked ROM version.

Three address spaces, the Program Memory, Register File, and Expanded Register File (ERF), support a wide range of memory configurations. Through the ERF, the designer has access to four additional control registers that provide extra peripheral devices, I/O ports, register addresses, an SPI receive buffer and SPI compare register.

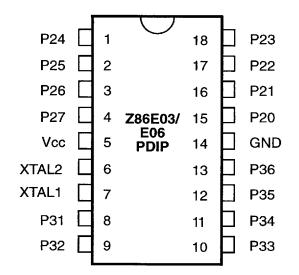
For applications demanding powerful I/O capabilities, the Z86E03/E06's dedicated input and output lines are grouped into two ports, and are configurable under software control to provide timing, status signals, or parallel I/O.

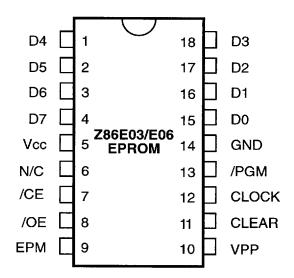

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g.: B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _∞	V _{DD}
Ground	GND	V _{ss}

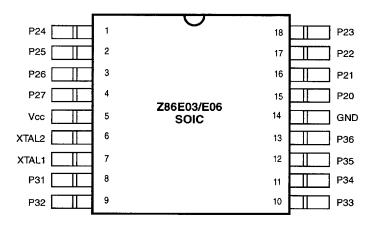

GENERAL DESCRIPTION (Continued)



Functional Block Diagram

GENERAL DESCRIPTION (Continued)

18-Pin DIP/WIN Pin Configuration


18-Pin EPROM Mode Pin Configuration

18-Pin Identification

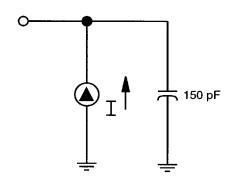
Pin #	Symbol	Function	Direction
1-4	P24-P27	Port 2, Pins 4,5,6,7	Input/Output
5	V _{cc}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	
7	XTAL1	Crystal Oscillator Clock	
8-10	P31-P33	Port 3, Pins 1,2,3	
11-13	P34-P36	Port 3, Pins 4,5,6	Fixed Output Input/Output
14	GND	Ground	
15-18	P20-23	Port 2, Pins 0,1,2,3	

GENERAL DESCRIPTION (Continued)

18-Pin SOIC
Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Max	Units
V _{CC}	Supply Voltage*	-0.3	+7.0	V
V _{CC}	Input Voltage**	-0.3	$V_{cc} + 0.3$	V
т	Storage Temp	-65	+ 150	С
T _A	Oper Ambient Temp	†		С


Notes:

- Voltage on Vcc with respect to Vss.
- † See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to ground. Positive current flows into the referenced pin (Test Load Configuration).

Test Load Configuration

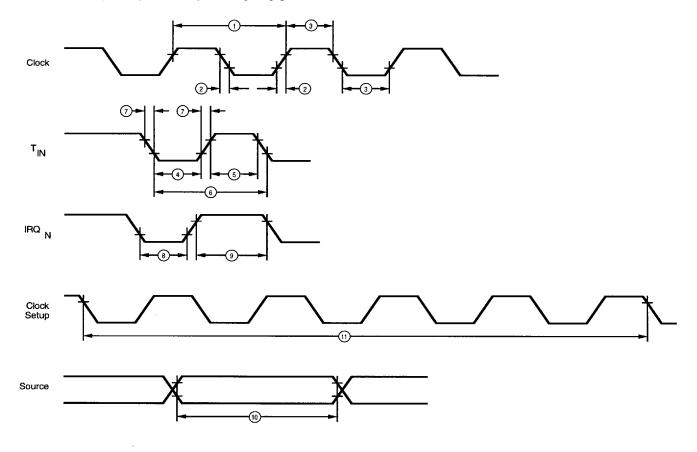
^{**} Voltages on all pins with respect to Vss without current limitations.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	V _{cc} Note [3]	(4.5V t	to 70°C to 5.5V) Max	Typical @ 25°C	Units	Conditions	Notes
	Max Input Voltage	5.0V		12		٧	I _{IN} ≤ 250 μA	[8]
V _{CH}	Clock Input High Voltage	5.0V	0.9 V _{cc}	V _{cc} +0.3	2.7	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	5.0V	V _{ss} -0.3	0.2 V _{cc}	1.7	V	Driven by External Clock Generator	
$\overline{V_{IH}}$	Input High Voltage	5.0V	0.7 V _{cc}	V _{cc} +0.3	2.5	٧	· · · · · · · · · · · · · · · · · · ·	
V_{IL}	Input Low Voltage	5.0V	V _{ss} -0.3	0.2 V _{cc}	1.6	٧	· · · · · · · · · · · · · · · · · · ·	712 · 6
V _{OH}	Output High Voltage (Low EMI Mode)	5.0V 5.0V	V _{CC} -0.4 V _{CC} -0.4		4.9 4.9	V V	$I_{OH} = -2.0 \text{ mA}$ $I_{OH} = -0.5 \text{ mA}$	[10]
V _{OL1}	Output Low Voltage (Low EMI Mode)	5.0V 5.0V		0.4 0.4	0.1 0.1	V V	$I_{oL} = +4.0 \text{ mA}$ $I_{oL} = +1.0 \text{ mA}$	[10]
V _{OL2}	Output Low Voltage	5.0V		1.0	0.3	٧	I _{oL} = +12 mA,	[10]
V _{OFFSET}	Comparator Input	5.0V		±10	± 5	mV		
V _{ICR}	Input Common Mode Voltage Range	5.0V	OV	V _{cc} -1.5v				[7]
I _{IL}	Input Leakage	5.0V	-1.0	1.0		μΑ	$V_{IN} = OV, V_{CC}$	
I _{OL}	Output Leakage	5.0V	-1.0	1.0		μА	V _{IN} = OV, V _{CC}	
I _{cc}	Supply Current	5.0V 5.0V		11.0 15	8.0 11	mA mA	@ 8 MHz @ 12 MHz	[4, 5, 12] [4, 5, 13]
l _{ob}	Input Bias Current	5.0V		300		nA		[7]
l _{io}	Input Offset Current	5.0V		±150		nA		[7]

DC ELECTRICAL CHARACTERISTICS (Continued)

Symbol	Parameter	V _{cc} Note [3]	T _A = 0°C to (4.5V to 5 Min N	5.5V) Ty	pical 25°C U	Jnits	Conditions	Notes
I _{cc1}	Standby Current	5.0V	5	3	3.0 m	ηA	HALT Mode V _{IN} = OV, V _{cc} @ 8 MHz	[4, 5, 12]
		5.0V	7.	.0 4	.0 m	ηA	HÄLT Mode V _{IN} = OV, V _{CC} @ 12 MHz	[4, 5,13]
		5.0V	3	.5 2.	.0 m	nΑ	Clock Divide by 16 @ 8 MHz	[4, 5,13]
		5.0V	4	.5 2.	.5 m	nΑ	Clock Divide by 16 @ 12 MHz	[4, 5,13]
		5.0V	1.	.0	m	nΑ	HALT Mode@12 MHz	[4, 5,11,13]
I _{CC2}	Standby Current	5.0V	10	0 1.	.6 μ/	A	STOP Mode V _{IN} = OV, V _{CC} WDT is not Running	[6, 9]
		5.0V		50	0 μ /	Α	STOP Mode $V_{IN} = OV$, V_{CC} WDT is Running	[6, 9]
ALL	Auto Latch Low Current	5.0V	30	0 19	9 μ/	A	OV < V _{IN} < V _{CC}	
ALH	Auto Latch High Current	5.0V	- ;	20 –	11 μ/	A	$OV < V_{IN} < V_{CC}$	
T _{POR}	Power On Reset	5.0V	3 1:	3 5	m	15		
V _{POR}	V _{cc} Low Voltage		2.2 2.	8 2.5	5 V	1	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	[3]


Notes:

[1]	I _{CC1}	Тур	Max	Unit	Freq
	Clock Driven	3.0	5.0	mΑ	8 MHz
	Crystal or Ceramic Resonator	0.3	5.0	mΑ	8 MHz

- [2] $V_{ss} = 0V = GND$
- [3] The V_{POR} increases as the temperature decreases.
- [4] All outputs unloaded, I/O pins floating, inputs at rail.
- [5] $C_{L1} = C_{L2} = 100 \text{ pF}$
- [6] Same as note [4] except inputs at V_{cc} .
- [7] For analog comparator inputs when analog comparators are enabled.
- [8] Excludes clock pins and Port 3 inputs.
- [9] Clock must be forced low when XTAL1 is clock driven and XTAL2 is floating.
- [10] Standard mode (not low EMI mode).
- [11] Low EMI oscillator enabled.
- [12] Z86E03.
- [13] Z86E06.

AC ELECTRICAL CHARACTERISTICS

Additional Timing

AC ELECTRICAL CHARACTERISTICS

			V _{cc}	T _A = 0°C To 8 MHz (E03)		o +70°C 12 MHz (E06)				
No	Symbol	Parameter	Note[3]	Min	Max	Min	Max	Units	Notes	
1	ТрС	Input Clock Period	5.0V	125	DC	83	DC	ns	[1,7,8]	
2	TrC,TfC	Clock Input Rise	5.0V		25		15	ns	[1,7,8]	
3 4	TwC TwTinL	Input Clock Width Timer Input Low Width	5.0V 5.0V	62 70		41 70		ns ns	[1,7,8] [1,7,8]	
5	TwTinH	Timer Input High Width	5.0V	5TpC		5TpC			[1,7,8]	

AC ELECTRICAL CHARACTERISTICS (Continued)

$T_A = 0^{\circ}C \text{ To } +70^{\circ}C$										
	_		V _{cc}	8 MI (E0:	3)	12 l (E0	6)			
No	Symbol	Parameter	Note[3]	Min	Max	Min	Max	Units	Notes	
6	TpTin	Timer Input Period	5.0V	8TpC		8TpC			[1,7,8]	
7	TrTin, TtTin	Timer Input Rise and Fall Timer	5.0V		100		100	ns	[1,7]	
8	TwiL	Int. Request Input Low Time	5.0V	70	,	70		ns	[1,2,7]	
9	TwiH	Int. Request Input High Time	5.0V	5TpC		5TpC			[1,8,10]	
10	Twsm	STOP Mode Recovery Width Spec	5.0V	20		20		ns	[1]	
11	Tost	Oscillator Startup Time	5.0V	5ТрС		5TpC		ms	[1,4,9]	
12	Twdt	Watch-Dog Timer Refresh Time	5.0V 5.0V 5.0V 5.0V	6 12 25 100		6 12 25 100		ms ms ms ms	D1 = 0 [5,6] D1 = 0 [5,6] D1 = 1 [5,6] D1 = 1 [5,6]	

- [1] Timing Reference uses 0.7 V_{cc} for a logic 1 and 0.2 V_{cc} for a logic 0. [2] Interrupt request through Port 3 (P33-P31).

- [3] $V_{cc} = 4.5V \text{ to } 5.5V.$ [4] SMR-D5 = 0, POR delay is off.
- [5] Reg. WDTMR.
- [6] Internal RC oscillator only.
- [7] SMR D1 = 0.
- [8] Maximum frequency for internal system clock is 4 MHz when using SCLK = external clock.
- [9] For RC and LC oscillator and for clock driven oscillator.
- [10] SMR-D5 = 1, STOP mode recovery delay is on.

© 1994 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056 Internet: http://www.zilog.com