

SMALL SIGNAL SCHOTTKY DIODE

DESCRIPTION

Metal to silicon junction diode featuring high breakdown, low turn-on voltage and ultrafast switching. Primarly intended for high level UHF/VHF detection and pulse application with broad dynamic range. Matched batches are available on request.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
V _{RRM}	Repetitive Peak Reverse Voltage	70		
I _F	Forward Continuous Current*	T _a = 25°C	15	mA
I _{FSM}	Surge non Repetitive Forward Current*	t _p ≤ 1s	50	mA
T _{stg} T _j	Storage and Junction Temperature Range		- 65 to 200	°C
TL	Maximum Lead Temperature for Soldering during 10s at 4mm from Case		230	°C

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j-a)}	Junction-ambient*	400	°C/W

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol		Test Conditions	Min.	Typ.	Max.	Unit
V (BR)	T _{amb} = 25°C	$I_R = 10\mu A$	70			V
V _F **	T _{amb} = 25°C	I _F = 1mA			0.41	V
	T _{amb} = 25°C	I _F = 15mA			1	
In**	T _{amb} = 25°C	V _R = 50V			0.2	μΑ

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions			Min.	Typ.	Max.	Unit
С	T _{amb} = 25°C	$V_R = 0V$	f = 1MHz			2	pF
τ	T _{amb} = 25°C	I _F = 5mA	Krakauer Method			100	ps

^{*} On infinite heatsink with 4mm lead length

^{* *} Pulse test : $t_0 \le 300 \mu s$ $\delta < 2\%$

Matched batches available on request. Test conditions (forward voltage and/or capacitance) according to customer specification.

Fig. 1 Forward current versus forward voltage at low level (typical values).

Fig.3 - Reverse current versus ambient temperature.

Fig.2 - Capacitance C versus reverse applied voltage $V_{\mbox{\scriptsize R}}$ (typical values).

Fig.4 - Reverse current versus continuous reverse voltage (typical values).