SMALL SIGNAL SCHOTTKY DIODE

DESCRIPTION

General purpose metal to silicon diode featuring very low turn-on voltage and fast switching.

SGS-THOMSON MICROELECTRONICS

This device has integrated protection against excessive voltage such as electrostatic discharges.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit	
VRRM	Repetitive Peak Reverse Voltage	100	V	
١ _٢	Forward Continuous Current*	$T_a = 25^{\circ}C$	100	mA
FRM	Repetitive Peak Forward Current*	$\begin{array}{l} t_p \leq 1s \\ \delta \leq 0.5 \end{array}$	1s 350 0.5	
IFSM	Surge non Repetitive Forward Current*	$t_p = 10ms$	750	mA
Ptot	Power Dissipation*	$T_a = 95^{\circ}C$	100	mW
T _{stg} Tj	Storage and Junction Temperature Range	- 65 to 150 - 65 to 125	°C ℃	
TL	Maximum Lead Temperature for Soldering durin from Case	230	°C	

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
Rth (j-a)	Junction-ambient*	300	°C/W

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol		Test Conditions		Min.	Тур.	Max.	Unit
V _(BR)	$T_j = 25^{\circ}C$	I _R = 100μA		100			V
V - * *	T _j = 25°C	I _F = 1mA			0.4	0.45	V
	T _j = 25°C	I _F = 200mA				1	
I _R **	$T_j = 25^{\circ}C$		V _R = 50V			0.1	μA
	$T_{j} = 100^{\circ}C$					20]

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions			Min.	Тур.	Max.	Unit
С	T _j = 25°C	$V_{R} = 1V$	f = 1MHz		2		pF

* On infinite heatsink with 4mm lead length

Pulse test : $t_p \le 300 \mu s$ $\delta < 2\%$.

BAT 41

BAT 41

Fig.1 Forward current versus forward voltage at different temperatures (typical values).

Fig.2 Forward current versus forward voltage (typical values).

Fig.3 - Reverse current versus junction temperature.

Fig.4 - Reverse current versus continuous reverse voltage (typical values).

