

SMALL SIGNAL SCHOTTKY DIODE

DESCRIPTION

General purpose metal to silicon diode featuring very low turn-on voltage and fast switching.

This device has integrated protection against excessive voltage such as electrostatic discharges.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit		
V _{RRM}	Repetitive Peak Reverse Voltage	80			
1 _F	Forward Continuous Current*	T _a = 70°C	500	mA	
FRM	Repetitive Peak Forward Current* $ \begin{array}{l} t_p = 1s \\ \delta \leq 0.5 \end{array} $		3	A	
IFSM	Surge non Repetitive Forward Current*	t _p ≤ 10ms	10	Α	
T _{stg} T _i	Storage and Junction Temperature Range		- 65 to 150 - 65 to 125	CC	
TL	Maximum Lead Temperature for Soldering during 10s at 4mm from Case		230	°C	

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
R _{th (j-a)}	Junction-ambient*	110	°C/W

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol	Test Conditions			Тур.	Max.	Unit
I _R **	T ₁ = 25°C	V _R = 80V			200	μА
V _F **	T _j = 25°C	I _F = 10mA			0.32	V
	T _j = 25°C	I _F = 100mA			0.42	
	T _j = 25°C	I _F = 1A			1	

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions			Min.	Тур.	Max.	Unit
С	T _j = 25°C	f = 1MHz	V _R = 0V		120		pF
			V _R = 5V		35		

^{*} On infinite heatsink with 4mm lead length

Pulse test: $t_p \le 300 \mu s$ $\delta < 2\%$.

Fig.1 - Forward current versus forward voltage at low level (typical values).

Fig.3 - Reverse current versus junction temperature.

Fig.2 - Forward current versus forward voltage at high level (typical values).

Fig.4 – Reverse current versus $V_{\mbox{\scriptsize RHM}}$ in per cent.

Fig.5 – Capacitance C versus reverse applied voltage $V_{\widetilde{H}}$ (typical values).

Fig.6 – Surge non repetitive forward current for a rectangular pulse with t \leqslant 10 ms.

Fig.7 - Surge non repetitive forward current versus number of cycles.

