

DB3 /DB4 / DC34

TRIGGER DIODES

FEATURES

V_{BO}: 32V/34V/40V VERSIONSLOW BREAKOVER CURRENT

DESCRIPTION

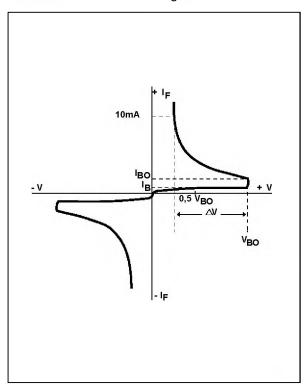
High reliability glass passivation insuring parameter stability and protection against junction contamination.

ABSOLUTE RATINGS (limiting values)

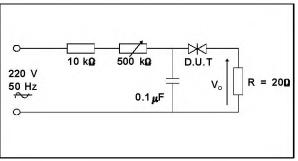
Symbol	Parameter	Value	Unit	
Р	Power dissipation on printed circuit (L = 10 mm)		150	mW
I _{TRM}	Repetitive peak on-state current	tp = 20 μs F= 100 Hz	2	А
Tstg Tj	Storage and operating junction temperat	- 40 to + 125 - 40 to + 125	္ခိ	

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
R _{th (j-a)}	Junction to ambient	400	°C/W
R _{th (j-l)}	Junction-leads	150	°C/W


April 1995 1/4

ELECTRICAL CHARACTERISTICS (Tj = 25°C)


Symbol	Parameter	Test Conditions		Value			Unit
				DB3	DC34	DB4	
V _{BO}	Breakover voltage * C = 22nF **		MIN	28	30	35	V
		see diagram 1	TYP	32	34	40	
			MAX	36	38	45	
[I+V _{BO} I-I-V _{BO} I]	Breakover voltage symmetry	C = 22nF ** see diagram 1	MAX	± 3			V
IΔV± I	Dynamic breakover voltage *	$\Delta I = [I_{BO} \text{ to } I_{F}=10\text{mA}]$ see diagram 1	MIN	IIN 5			V
Vo	Output voltage *	see diagram 2	MIN	5		V	
I _{BO}	Breakover current *	C = 22nF **	MAX	100	50	100	μА
tr	Rise time *	see diagram 3	TYP		1.5		μs
I _B	Leakage current *	V _B = 0.5 V _{BO} max see diagram 1	MAX	10		μА	

^{*} Electrical characteristic applicable in both forward and reverse directions.

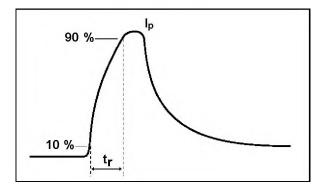

DIAGRAM 1: Current-voltage characteristics

DIAGRAM 2: Test circuit for output voltage

DIAGRAM 3 : Test circuit see diagram 2. Adjust R for lp=0.5A

^{**} Connected in parallel with the devices.

Fig.1: Power dissipation versus ambient temperature (maximum values)

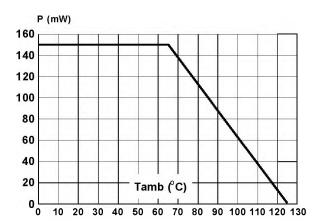


Fig.2 : Relative variation of V_{BO} versus junction temperature (typical values)

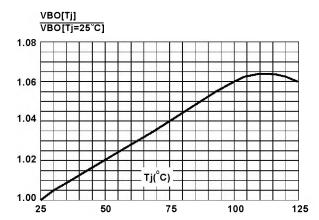
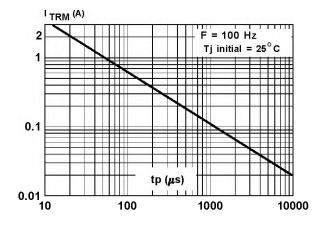
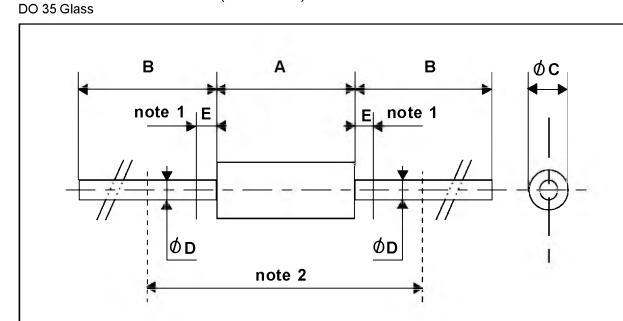




Fig.3 : Peak pulse current versus pulse duration (maximum values)

PACKAGE MECHANICAL DATA (in millimeters)

REF.	DIMENSIONS				NOTES	
	Millimeters		Millimeters Inches		hes	
	Min.	Max.	Min.	Max.		
Α	3.050	4.500	0.120	0.117	1 - The lead diameter Ø D is not_controlled over zone E	
В	12.7		0.500		2 - The minimum axial lengh within which the device may be	
ØC	1.530	2.000	0.060	0.079	placed with its leads bent at right angles is 0.59"(15 mm)	
ØD	0.458	0.558	0.018	0.022		
E		1.27		0.050		

Cooling method by convection and conduction

Marking: type number

Weight: 0.15 g

Polarity : N A Stud torque : N A

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I^2C Components by SGS-THOMSON Microelectronics, conveys a license under the Philips I^2C Patent. Rights to use these components in an I^2C system, is granted provided that the system conforms to the I^2C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

