

MUR3040PT, RURH1540CC, MUR3050PT, RURH1550CC, MUR3060PT, RURH1560CC

April 1995

File Number 2774.3

15A, 400V - 600V Ultrafast Dual Diodes

MUR3040PT, MUR3050PT, MUR3060PT and RURH1540CC, RURH1550CC, RURH1560CC are ultrafast dual diodes (t_{RR} < 55ns) with soft recovery characteristics. They have a low forward voltage drop and are of planar, silicon nitride passivated, ion-implanted, epitaxial constructiodn.

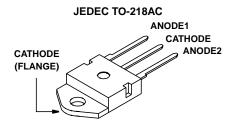
These devices are intended for use as energy steering/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and ultrafast recovery with soft recovery characteristics minimizes ringing and electrical noise in many power switching circuits thus reducing power loss in the switching transistor.

Ordering Information

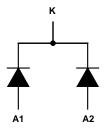
PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND			
MUR3040PT	TO-218AC	MUR3040PT			
RURH1540CC	TO-218AC	RURH1540C			
MUR3050PT	TO-218AC	MUR3050PT			
RURH1550CC	TO-218AC	RURH1550C			
MUR3060PT	TO-218AC	MUR3060PT			
RURH1560CC	TO-218AC	RURH1560C			

NOTE: When ordering, use the entire part number.


Features

- Ultrafast with Soft Recovery Characteristic $(t_{RR} < 55ns)$
- +175°C Rated Junction Temperature
- · Reverse Voltage Up to 600V
- · Avalanche Energy Rated


Applications

- Switching Power Supply
- · Power Switching Circuits
- General Purpose

Package

Symbol

Absolute Maximum Ratings $T_C = +25^{\circ}C$, Unless Otherwise Specified

	MUR3040PT RURH1540CC	MUR3050PT RURH1550CC	MUR3060PT RURH1560CC
Peak Repetitive Reverse VoltageVRRM	400V	500V	600V
Working Peak Reverse Voltage	400V	500V	600V
DC Blocking VoltageV _R	400V	500V	600V
Average Rectified Forward Current $I_{F(AV)}$ (Total device forward current at rated V_R and $T_C = +150^{\circ}C$)	15A	15A	15A
Peak Forward Repetitive Current I_{FRM} (Rated V_R , square wave 20kHz)	42	42	30A
Nonrepetitive Peak Surge Current	200A	200A	200A
Operating and Storage Temperature	-55°C to +175°C	-55°C to +175°C	-55°C to +175°C

MUR3040PT, RURH1540CC, MUR3050PT, RURH1550CC, MUR3060PT, RURH1560CC

Electrical Specifications T_C = +25°C, Unless Otherwise Specified

		LIMITS									
	TEST	MUR3040PT, RURH1540CC		MUR3050PT, RURH1550CC		MUR3060PT, RURH1560CC					
SYMBOL	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _F	$I_F = 15A$ $T_C = +150^{\circ}C$	-	-	1.12	-	-	1.20	-	-	1.20	V
	$I_F = 15A$ $T_C = +25^{\circ}C$	-	-	1.25	-	-	1.50	-	-	1.50	V
I_R at $T_C = +150^{\circ}C$	V _R = 400V	-	-	500	-	-	-	-	-	-	μΑ
	V _R = 500V	-	-	-	-	-	500	-	-	-	μΑ
	V _R = 600V	-	-	-	-	-	-	-	-	500	μΑ
I_R at $T_C = +25^{\circ}C$	V _R = 400V	-	-	100	-	-	-	-	-	-	μΑ
	V _R = 500V	-	-	-	-	-	100	-	-	-	μΑ
	V _R = 600V	-	-	-	-	-	-	-	-	100	μΑ
^t RR	I _F = 1A	-	-	55	-	-	55	-	-	55	ns
	I _F = 15A	-	-	60	-	-	60	-	-	60	ns
t _A	I _F = 1A	-	20	-	-	20	-	-	20	-	ns
	I _F = 15A	-	30	-	-	30	-	-	30	-	ns
t _B	I _F = 1A	-	15	-	-	15	-	-	15	-	ns
	I _F = 15A	-	17	-	-	17	-	-	20	-	ns
$R_{\theta JC}$		-	-	1.5	-	-	1.5	-	-	1.5	°C/W
E _{AVL}	see Fig. 7, 8	-	-	20	-	-	20	-	-	20	mj

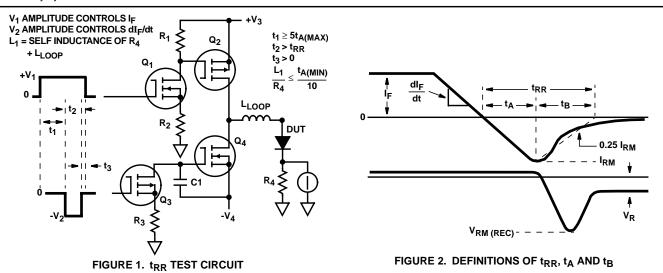
DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 μ s, D = 2%).

I_R = Instantaneous reverse current.

 t_{RR} = Reverse recovery time at dI_F/dt = 100A/ μ s (See Figure 2), summation of t_A + t_B .

 t_A = Time to reach peak reverse current at dI_F/dt = 100A/ μ s (See Figure 2).


t_B = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 2).

 $R_{\theta JC}$ = Thermal resistance junction to case.

E_{AVL} = Controlled avalanche energy (See Figures 7 and 8).

pw = pulse width.

D = duty cycle.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site $\ensuremath{\text{http://www.intersil.com}}$

Typical Performance Curves

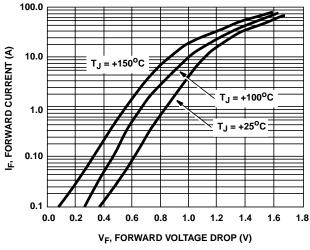
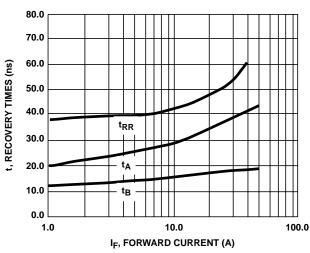



FIGURE 3. FORWARD VOLTAGE vs FORWARD CURRENT CHARACTERISTIC

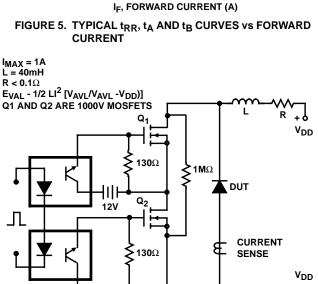


FIGURE 7. AVALANCHE ENERGY TEST CIRCUIT

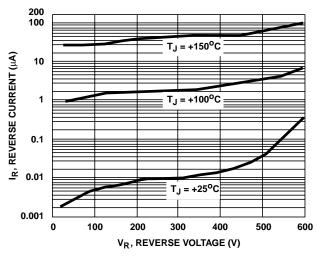


FIGURE 4. REVERSE VOLTAGE VS REVERSE CURRENT CHARACTERISTIC

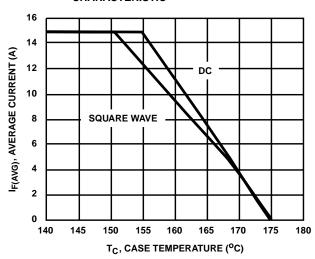


FIGURE 6. TYPICAL CURRENT DERATING CURVE vs CASE TEMPERATURE

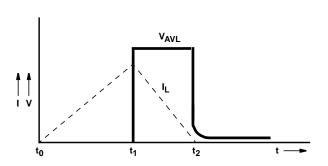


FIGURE 8. CURRENT VOLTAGE WAVEFORM

12V