PFR 850 → 856

FAST RECOVERY RECTIFIER DIODES

- LOW FORWARD VOLTAGE DROP
- HIGH SURGE CURRENT CAPABILITY

APPLICATIONS

- AC-DC POWER SUPPLIES AND CONVER-TERS
- FREE WHEELING DIODES, etc.

DESCRIPTION

Their high efficiency and high reliability combined with small size and low cost make these fast recovery rectifier diodes very attractive components for many demanding applications.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit A	
I _{FRM}	Repetitive Peak Forward Current t _p ≤ 20µs			
I _{F (AV)}	Average Forward Current*	T _a = 90°C	3	Α
I _{FSM}	Surge non Repetitive Forward Current	t _p = 10ms Sinusoidal	150	A
Ptot	Power Dissipation*	T _a = 90°C	3.5	W
T _{stg} T _i	Storage and Junction Temperature Range	- 40 to 175	°C	
TL	Maximum Lead Temperature for Soldering during 10s at 4mm from Case		230	∘C

Symbol	Parameter		PFR				
			851	852	854	856	Unit
V _{RRM}	Repetitive Peak Reverse Voltage		100	200	400	600	V
V _{RSM}	Non Repetitive Peak Reverse Voltage	75	150	250	450	650	V

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
Ath (j-a)	Junction-ambient*	25	°C/W

^{*} On infinite heatsink with 10mm lead length.

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol	Test Conditions		Min.	Тур.	Max.	Unit
I _R	T _j = 25°C	$V_{R} = V_{RRM}$			10	μΑ
	T _J = 100°C				500	
V _F	T _j = 25°C	I _F = 3A			1.25	V

RECOVERY CHARACTERISTICS

Symbol	Test Conditions			Min.	Тур.	Max.	Unit
t _{rr}	T _j = 25°C	I _F = 1A	PFR 850 → 854			150	ns
	V _R = 30V	$d_{iF}/dt = -25A/\mu s$	PFR 856			200	
I _{RM}	T _j = 25°C	I _F = 1A				2	Α
	V _R = 30V	$d_{iF}/dt = -25A/\mu s$					

Fig.1 Recovered charge versus di_F/dt (typical values).

Fig.2 - Mean forward current ${\rm I}_{\rm O}$ versus ambient temperature (maximum values).

Fig. 4 - Mean power dissipation versus mean forward current I for different rectifying types, in the case of : - a resistive load (a = 1.57)

- a capacitive load (a > 1.57)

Fig.5 - Transient thermal impedance junction-ambient for mounting n^o2 versus pulse duration (L ~ 10 mm)

Fig.3 - Thermal resistance versus lead length (maximum values).

Mounting n° 1 : INFINITE HEATSINK

Mounting n°2 : PRINTED CIRCUIT

Mounting n°3: L = 10 mm R_{th} = 55 °C/W

Fig.6 - Non repetitive surge peak forward current versus number of cycles.

Fig.3a/3b - Peak forward current versus peak forward voltage drop.

Fig.8 – Non repetitive surge peak forward current for a sinusoidal pulse with width : t \leqslant 10 ms, and corresponding value of I^2t .

Fig.9 - Capacity C versus reverse applied voltage $\rm V_{\mbox{\footnotesize R}}$ (typical values).