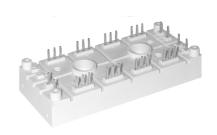
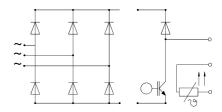


V _{RSM}	V _{RRM} V _{DRM} V	I _{RMS} (maximum values for continuous operation) (T _h = 80 °C) 140 A
1300	1200	SKD 146/12-L75
1700	1600	SKD 146/16-L75

Absolut	e Maximum Ratings				
Symbol	Conditions 1)	Values	Units		
Bridge Rec	tifier				
I _D I _{FSM} /I _{TSM} I ² t	$T_{heatsink}$ = 85 °C; inductive load t_p = 10 ms; sin. 180 °C, T_{jmax} tp = 10 ms, sin. 180°, T_{jmax}	140 1250 7800	A A A ² s		
IGBT Chop	per				
V _{CES} V _{GES} I _C	T _{heatsink} = 25 / 70 °C	1200 ± 20 100 / 75	V V A		
I _{CM}	$t_p = 1 \text{ ms}; T_{\text{heatsink}} = 25 / 70 \text{ °C}$	200 / 150	Α		
Freewheeling Diode ²⁾					
V _{RRM} I _F I _{FM}	$T_{heatsink} = 25 / 70 ^{\circ}\text{C}$ $t_p = 1 \text{ms}; T_{heatsink} = 25 / 70 ^{\circ}\text{C}$	1200 90 / 70 180 / 140	V A A		
T _j T _j T _{stg}	Diode & IGBT Thyristor	- 40 + 150 - 40 + 125 - 40 + 125	່ວໍວໍວ		
V _{isol}	AC, 1 min.	2500	V		


Characteristics								
Symbol	Conditions 1)	min.	typ.	max.	Units			
Diode - F	Rectifier							
V_{F}	I _F = 150 A T _j =1 25 °C	_	1,3	_	V			
V_{TO}	T _i = 125 °C	_	0,8	-	V			
r _T	$T_{j} = 125 ^{\circ}\text{C}$	_	4	_	$m\Omega$			
R_{thjh}	per diode	_		0,6	K/W			
IGBT - Chopper								
V_{CEsat}	$I_C = 75 \text{ A}$ $T_j = 25 ^{\circ}\text{C}, V_{GE} = 15 ^{\circ}\text{V}$	_	2,35	2,85	V			
$t_{d(on)}$	$V_{CC} = 600 \text{ V}; V_{GE} = \pm 15 \text{ V}$	_	70	_	ns			
t _r	I _C = 75 A; T _j = 125 °C	_	50	_	ns			
$t_{d(off)}$	$R_{gon} = R_{goff} = 12 \Omega$	_	450	_	ns			
t_f	inductive load	_	45	_	ns			
$E_{on} + E_{off}$		_	16	_	mJ			
C _{ies}	$V_{CE} = 25 \text{ V}; V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	_	5,8	_	nF			
R_{thjh}	per IGBT	_	_	0,37	K/W			
Diode ²⁾ - Freewheeling								
V_{F}	$I_F = 75 \text{ A}$ $T_i = 25 ^{\circ}\text{C}$	_	2,0	2,5	V			
V_{TO}	$T_i = 125 ^{\circ}C$	_	1,1	1,2	V			
r _T	T _i = 125 °C	_		15	mΩ			
I_{RRM}	$I_F = 75 \text{ A}; V_R = -600 \text{ V}$	_	75	_	Α			
Q_{rr}	\rightarrow di _F /dt = $-800 \text{ A/}\mu\text{s}$	_	11	_	μC			
E_{off}	$V_{GE} = 0 \text{ V}, T_i = 125 \text{ °C}$	_	TBD	_	mJ			
R_{thjh}	per diode	_	_	0,74	K/W			
Temperature Sensor								
R _{TS}	$T = 25 / 100 ^{\circ}C$		1000 / 1670					
Mechanical Data								
M ₁	case to heatsink, SI Units	2,5	_	3,5	Nm			
Case	,	,-	G 60	- , -				

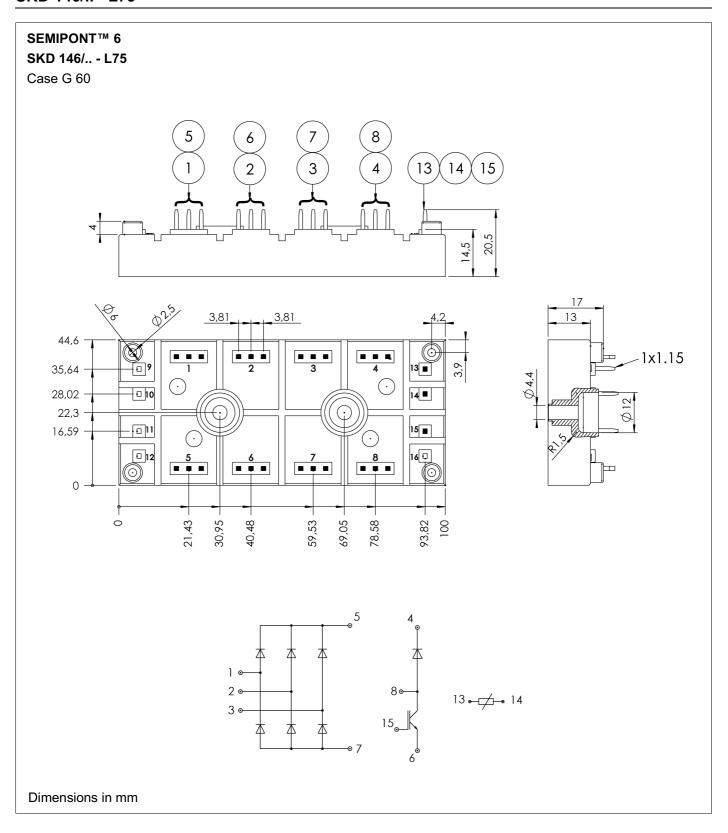

SEMIPONT™ 6

SKD 146/.. - L75

3-phase bridge rectifier + **IGBT** braking chopper

Preliminary Data

· Specifications of temperature sensor see part A


Features

- · Compact design
- · Two screws mounting
- Heat transfer and isolation through direct copper board (low R_{th})
- · Low resistance in steady- state and high reliability
- High surge currents
- Up to 1600 V reverse voltage
- UL recognized, file no. E 63 532

Typical Applications

- DC drives
- · Controlled field rectifiers for DC motors
- · Controlled battery charger
- 1) T_{heatsink} = 25 °C, unless otherwise
- specified

 2) CAL = Controlled Axial Lifetime Technology (soft and fast recovery)

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.