TURBOSWITCH тм "A". ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCT CHARACTERISTICS

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	12 A
$\mathrm{~V}_{\text {RRM }}$	1200 V
$\mathrm{t}_{\text {rr }}$ (typ)	ns
V_{F} (max)	V

FEATURES AND BENEFITS

- ULTRA-FAST, SOFT AND NOISE-FREE RECOVERY.
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR
- HIGH FREQUENCY AND/OR HIGH PULSED CURRENT OPERATIONS.

DESCRIPTION

The TURBOSWITCH is a very high performance series of ultra-fast high voltage power diodes from 600 V to 1200 V .
TURBOSWITCH 1200V drastically cuts losses in all high voltage operations which require extremely fast, soft and noise-free power diodes. Due to their optimized switching performances they also highly decrease power losses in any associated switching IGBT or MOSFET in all "Freewheel

Mode" operations.
They are particularly suitable in Motor Control circuitries, or in the primary of SMPS as snubber, clamping or demagnetizing diodes, and also at the secondary of SMPS as high voltage rectifier diodes.
Packaged in TO220AC, this 1200 V device is particularly intended for use on 3 phase 400 V industrial mains.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V $_{\text {RRM }}$	Repetitive peak reverse voltage	1200	V
V RSM	Non repetitive peak reverse voltage	1200	V
$I_{\text {F(RMS })}$	RMS forward current	30	A
$I_{\text {FRM }}$	Repetitive peak forward current $\quad(\mathrm{tp}=5 \mu \mathrm{~s}, \quad \mathrm{f}=5 \mathrm{kHz})$	180	A
$\mathrm{~T}_{\mathrm{j}}$	Max operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

TM : TURBOSWITCH is a trademark of SGS-THOMSON Microelectronics.

THERMAL AND POWER DATA

Symbol	Parameter	Conditions	Value	Unit
$\mathrm{R}_{\mathrm{th}(\mathrm{j}-\mathrm{c})}$	Junction to case thermal resistance		1.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{1}	Conduction power dissipation (see fig. 6)	$\mathrm{I}(\mathrm{AV})=12 \mathrm{~A} \quad \delta=0.5$ $\mathrm{TC}=95^{\circ} \mathrm{C}$	29.2	W
$\mathrm{P}_{\text {max }}$	Total power dissipation $\mathrm{Pmax}=\mathrm{P} 1+\mathrm{P} 3 \quad(\mathrm{P} 3=10 \% \mathrm{P} 1)$	$\mathrm{TC}=89^{\circ} \mathrm{C}$	32.1	W

STATIC ELECTRICAL CHARACTERISTICS (see Fig.6)

Symbol		Parameter	Test Conditions		Min	Typ	Max	Unit
V_{F}	-	Forward voltage drop	$I_{F}=12 \mathrm{~A}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & 2.2 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
		Reverse leakage current	$\begin{aligned} & V_{R}=0.8 \\ & x V_{\text {RRM }} \end{aligned}$	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{Tj}=125^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 100 \\ 5.0 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$

Test pulses widths: *tp $=380 \mu \mathrm{~s}$, duty cycle $<2 \%$
** t p $=5 \mathrm{~ms}$, duty cycle $<2 \%$

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING (see Fig.7)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$t_{\text {r }}$	Reverse recovery time	$\begin{aligned} & \mathrm{Tj}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{IF}_{\mathrm{F}}=0.5 \mathrm{~A} \quad I_{\mathrm{R}}=1 \mathrm{~A} \quad \mathrm{Irr}=0.25 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad d \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{S} \quad \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$		50	100	ns
IRM	Maximum reverse recovery current	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=125^{\circ} \mathrm{C} \quad \mathrm{VR}=600 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=12 \mathrm{~A} \\ & \mathrm{~d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=-96 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~d} \mathrm{I}_{\mathrm{F}} / \mathrm{dt}=-500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		30	18	A
S factor	Softness factor	$\begin{aligned} & T_{j}=125^{\circ} \mathrm{C} \quad V_{\mathrm{R}}=600 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=12 \mathrm{~A} \\ & \mathrm{~d} \mathrm{l}_{\mathrm{F}} / \mathrm{dt}=-500 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$		1.2		1

TURN-ON SWITCHING (see Fig.8)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
tr	Forward recovery time	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=96 \mathrm{~A} / \mu \mathrm{S} \\ & \text { measured at, } 1.1 \times \mathrm{V}_{\mathrm{F}} \mathrm{max} \end{aligned}$			TBD	ns
$V_{\text {Fp }}$	Peak forward voltage	$\begin{aligned} & \mathrm{Tj}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=12 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=96 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=500 \mathrm{~A} / \mu \mathrm{S} \end{aligned}$			$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	V

APPLICATION DATA

The 1200V TURBOSWITCH series has been designed to provide the lowest overall power losses in all high frequency or high pulsed current operations. In such applications (Fig 1 to 5), the way of calculating the power losses is given below

Fig. 1 : "FREEWHEEL" MODE.

Fig. 2 : SNUBBER DIODE.

Fig. 4 : DEMAGNETIZING DIODE.

Fig. 3 : CLAMPING DIODE.

Fig. 5 : RECTIFIER DIODE.

STATIC \& DYNAMIC CHARACTERISTICS . POWER LOSSES .

Fig. 6: STATIC CHARACTERISTICS

Conduction losses:

$$
\begin{aligned}
& \mathrm{P} 1=\mathrm{V}_{\text {t0 }} \cdot \mathrm{IF}(\mathrm{AV})+\mathrm{R}_{\mathrm{d}} \cdot \mathrm{IF}^{2}(\mathrm{RMS}) \\
& \text { with } \\
& \\
& \\
& \mathrm{V}_{10}=1.57 \mathrm{~V} \\
& R_{d}=0.036 \mathrm{Ohm}
\end{aligned}
$$

(Max values at $125^{\circ} \mathrm{C}$, suitable for Ipeak < 3 . $\mathrm{IF}_{\text {(av) }}$)
Reverse losses :
$P 2=V_{R} \cdot I_{R} \cdot(1-\delta)$

APPLICATION DATA (Cont'd)

Fig. 7: TURN-OFF CHARACTERISTICS

Fig. 8: TURN-ON CHARACTERISTICS

Turn-on losses:

(in the transistor, due to the diode)

$$
\begin{aligned}
P 5 & =\frac{V_{R} \times I_{R M}^{2} \times(3+2 \times S) \times F}{6 \times d I_{F} / d t} \\
& +\frac{V_{R} \times I_{R M} \times I_{L} \times(S+2) \times F}{2 \times d I_{F} / d t}
\end{aligned}
$$

Turn-off losses (in the diode) :

$$
\mathrm{P} 3=\frac{V_{R} \times I_{R M^{2}} \times S \times F}{6 \times d l_{F} / d t}
$$

Turn-off losses :
(with non negligible serial inductance)

$$
\begin{aligned}
\mathrm{P}_{3}^{\prime}= & \frac{V_{R} \times I_{R M^{2} \times S \times F}^{6 \times d l_{F} / d t}}{}+ \\
& \frac{L \times I_{R M}{ }^{2} \times F}{2}
\end{aligned}
$$

P3, P3' and P5 are suitable for power MOSFET and IGBT

Turn-on losses:
P4 = 0.4 (VFP - VF) . IFmax . tfr . F

