STTA2006M

ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCT CHARACTERISTICS

$\mathbf{I}_{\mathrm{F}(\mathrm{AV})}$	20 A
$\mathrm{~V}_{\text {RRM }}$	600 V
$\mathrm{t}_{\text {rr }}$ (typ)	30 ns
$\mathrm{~V}_{\mathrm{F}}$ (max)	1.5 V

FEATURES AND BENEFITS

- SPECIFIC TO "FREEWHEEL MODE" OPERATIONS: Freewheel or Booster Diode.
- ULTRA-FAST AND SOFT RECOVERY.
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR.
- HIGH FREQUENCY OPERATIONS.
- HIGH DISSIPATION MINIATURE PACKAGE.
- SURFACE MOUNT TECHNOLOGY COMPATIBLE.

in motor control freewheel applications and in booster diode applications in Power Factor Control circuitries.
Packaged in a very high performance surface mount package PSO-10, this 600 V device is particularly intended for use on 240 V domestic mains.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VRRM	Repetitive peak reverse voltage	600	V
VRSM	Non repetitive peak reverse voltage	600	V
IF(RMS)	RMS forward current \quad (All pins connected)	44	A
IFRM	Repetitive peak forward current (tp $=5 \mu \mathrm{~s}, \quad \mathrm{f}=5 \mathrm{kHz}$)	180	A
$\mathrm{~T}_{\mathrm{j}}$	Max operating junction temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

[^0]
THERMAL AND POWER DATA

Symbol	Parameter	Conditions	Value	Unit
Rth $(j-c)$	Junction to case thermal resistance		1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{1}	Conduction power dissipation (see fig. 2)	$\mathrm{IF}(\mathrm{AV})=20 \mathrm{~A} \quad \delta=0.5$ $\mathrm{Tc}=96^{\circ} \mathrm{C}$	36	W
$\mathrm{P}_{\text {max }}$	Total power dissipation $\mathrm{Pmax}=\mathrm{P} 1+\mathrm{P} 3 \quad(\mathrm{P} 3=10 \% \mathrm{P} 1)$	$\mathrm{Tc}=90^{\circ} \mathrm{C}$	40	W

STATIC ELECTRICAL CHARACTERISTICS (see Fig.2)

Symbol		Parameter Forward voltage drop	Test Conditions		Min	Typ	Max	Unit
V_{F}	*		$\mathrm{IF}=20 \mathrm{~A}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$			1.75	V
				$\mathrm{Tj}=125^{\circ} \mathrm{C}$			1.5	
IR	*	Reverse leakage current	$\begin{aligned} & V_{R}=0.8 \\ & \times \text { VRRM } \end{aligned}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$
				$\mathrm{Tj}=125^{\circ} \mathrm{C}$			6	mA

Test pulses widths: *tp $=380 \mu \mathrm{~s}$, duty cycle $<2 \%$
** tp = 5 ms, duty cycle < 2\%

DYNAMIC ELECTRICAL CHARACTERISTICS
 TURN-OFF SWITCHING (see Fig.3)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
trr	Reverse recovery time	$\begin{aligned} & T j=25^{\circ} \mathrm{C} \\ & \mathrm{IF}=0.5 \mathrm{~A} \quad \mid \mathrm{R}=1 \mathrm{~A} \quad I_{\mathrm{rr}}=0.25 \mathrm{~A} \\ & I_{F}=1 \mathrm{~A} \quad \mathrm{dIF} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{S} \quad \mathrm{~V}=30 \mathrm{~V} \end{aligned}$		30	60	ns
IRM	Maximum reverse recovery current	$\begin{aligned} & \mathrm{Tj}=125^{\circ} \mathrm{C} \quad V \mathrm{R}=400 \mathrm{~V} \quad \mathrm{IF}=20 \mathrm{~A} \\ & \mathrm{dlF} / \mathrm{dt}=-160 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{dIF} / \mathrm{dt}=-500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		17.5	12.5	A
S factor	Softness factor	$\begin{aligned} & \mathrm{Tj}=125^{\circ} \mathrm{C} \quad V \mathrm{R}=400 \mathrm{~V} \quad \mathrm{IF}=20 \mathrm{~A} \\ & \mathrm{dlF} / \mathrm{dt}=-500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		0.42		1

TURN-ON SWITCHING (see Fig.4)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
tfr	Forward recovery time	$\mathrm{Tj}=25^{\circ} \mathrm{C}$ $\mathrm{IF}=20 \mathrm{~A} \mathrm{dl} / \mathrm{dt}=160 \mathrm{~A} / \mu \mathrm{s}$ measured at, $1.1 \times \mathrm{V} \mathrm{Fmax}$			600	ns
$\mathrm{VFp}_{\mathrm{Fp}}$	Peak forward voltage	$\mathrm{Tj}=25^{\circ} \mathrm{C}$ $\mathrm{IF}=20 \mathrm{~A} \mathrm{dlF} / \mathrm{dt}=160 \mathrm{~A} / \mu \mathrm{s}$			12	V

PIN OUT configuration in PowerSO-10 :
Anode $=$ pin 1 to 5
Cathode $=$ connected to base tab

APPLICATION DATA

The TURBOSWITCH " A " is especially designed to provide the lowest overall power losses in any "FREEWHEEL Mode" application (Fig.1) considering both the diode and the companion
transistor, thus optimizing the overall performance in the end application.
The way of calculating the power losses is given below:

Fig. 1 : "FREEWHEEL" MODE.

APPLICATION DATA (Cont'd)

Fig. 2: STATIC CHARACTERISTICS

Fig. 3: TURN-OFF CHARACTERISTICS

Fig. 4: TURN-ON CHARACTERISTICS

Conduction losses :
$P_{1}=V_{10} \cdot I F(A V)+R_{d} \cdot I^{2}(R M S)$
with

$$
\begin{gathered}
V_{t 0}=1.15 \mathrm{~V} \\
R_{d}=0.017 \mathrm{Ohm} \\
\text { (Max values at } 125^{\circ} \mathrm{C} \text {) }
\end{gathered}
$$

Reverse losses:
$\mathrm{P} 2=\mathrm{V}_{\mathrm{R}} \cdot \mathrm{IR} \cdot(1-\delta)$

Turn-on losses:
(in the transistor, due to the diode)

$$
\begin{aligned}
P 5 & =\frac{V_{R} \times I_{R M}{ }^{2} \times(3+2 \times S) \times F}{6 \times d I_{F} / d t} \\
& +\frac{V_{R} \times I_{R M} \times I_{L} \times(S+2) \times F}{2 \times d I_{F} / d t}
\end{aligned}
$$

Turn-off losses (in the diode) :
$P_{3}=\frac{V_{R} \times I_{R M}{ }^{2} \times S \times F}{6 \times d I_{F} / d t}$
P3 and P5 are suitable for power MOSFET and IGBT

Turn-on losses :
P4 $=0.4$ (VFP - VF) . IFmax. Ifr. F

Fig 5 : Conduction losses versus average current

Fig 7 : Switching ON losses versus dlf/dt

Fig 9 : Forward voltage drop versus forward current

Fig 6 : Switching OFF losses versus $\mathrm{dl}_{\mathrm{F} / \mathrm{dt}}$

Fig 8 : Switching losses in transistor due to the diode

Fig 10 : Relative variation of thermal transient impedance junction to case versus pulse duration

Fig 11 : Peak reverse recovery current versus dif/dt

Fig 13 : Softness factor ($\mathrm{tb} / \mathrm{ta}$) versus $\mathrm{dl} \mathrm{F} / \mathrm{dt}$

S factor

Fig 15 : Transient peak forward voltage versus dif/dt

Fig 12 : Reverse recovery time versus dlf/dt

Fig 14 : Relative variation of dynamic parameters versus junction temperature (Reference $\mathrm{Tj}=125^{\circ} \mathrm{C}$)

Fig 16 : Forward recovery time versus $d \mathrm{lf} / \mathrm{dt}$

[^0]: TM : PowerSO-10 and TURBOSWITCH are trademarks of SGS-THOMSON Microelectronics.

