

TMBYV 10-20A

SMALL SIGNAL SCHOTTKY DIODE

DESCRIPTION

Metal to silicon rectifier diode in glass case featuring very low forward voltage drop and fast recovery time, intended for low voltage switching mode power supply, polarity protection and high frequency circuits.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter		Value	Unit	
V _{RRM}	Repetitive Peak Reverse Voltage		20	V	
I _{F(AV)}	Average Forward Current	T ₁ = 60°C	1	Α	
I _{FSM}	Surge non Repetitive Forward Current	$T_1 = 25^{\circ}C$ $t_p = 10$ ms	25 Sinusoidal Pulse	А	
		T ₁ = 25°C t _p = 300μs	50 Rectangular Pulse		
T _{stg} T _j	Storage and Junction Temperature Range		- 65 to 150 - 65 to 125	°€	
TL	Maximum Lead Temperature for Soldering dur	260	°C		

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
Rth (j-l)	Junction-leads	110	°C/W

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Symbol	Test Conditions		Min.	Typ.	Max.	Unit
I _R *	T _j = 25°C	$V_R = V_{RRM}$			0.3	mA
	T ₁ = 100°C				10	
V _F *	I _F = 1A	T _j = 25°C			0.45	V
	I _F = 3A				0.75	

Pulse test: t_p ≤ 300μs δ < 2%.

DYNAMIC CHARACTERISTICS

Symbol	Test Conditions		Тур.	Max.	Unit
С	$T_1 = 25^{\circ}C$ $V_R = 0$		330		pF

Forward current flow in a schottky rectifier is due to majority carrier conduction. So reverse recovery is not affected by stored charge as in conventional PN junction diodes.

Nevertheless, when the device switches from forward biased condition to reverse blocking state, current is required to charge the depletion capacitance of the diode.

This current depends only of diode capacitance and external circuit impedance. Satisfactory circuit behaviour analysis may be performed assuming that schottky rectifier consists of an ideal diode in parallel with a variable cpacitance equal to the junction capacitance (see fig. 5 page 4/4).

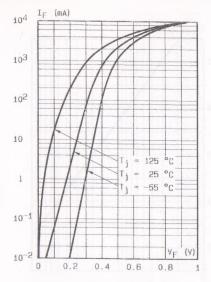


Fig.1 - Forward current versus forward voltage at low level (typical values).

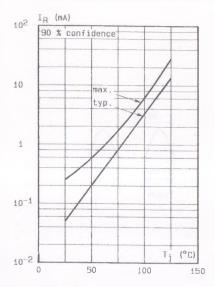


Fig.3 — Reverse current versus junction temperature.

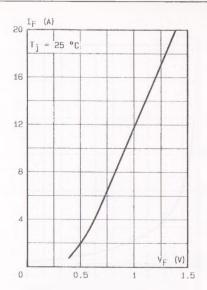


Fig.2 – Forward current versus forward voltage at high level (typical values).

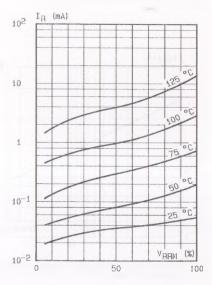


Fig.4 – Reverse current versus $V_{\mbox{\footnotesize{RRM}}}$ in per cent.

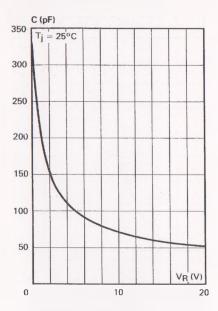


Fig.5 - Capacitance C versus reverse applied voltage V_R (typical values)

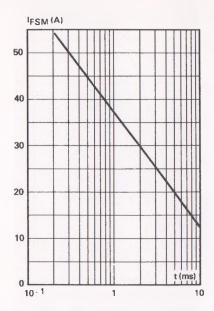
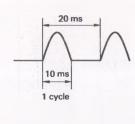



Fig.6 - Surge non repetitive forward current for a rectangular pulse with t ≤10 ms.

Fig.7 - Surge non repetitive forward current versus number of cycles.

