
Index of /ds/2N/

	Name	Last modified	Size	Description
₽.	Parent Directory			
<u> </u>	2N3390.pdf	22-Dec-99 00:00	25K	
<u> </u>	2N3391.pdf	22-Dec-99 00:00	25K	
[``_	2N3391A.pdf	22-Dec-99 00:00	25K	
Ŀì_	2N3392.pdf	22-Dec-99 00:00	25K	
Ŀ_	2N3393.pdf	22-Dec-99 00:00	25K	
Ľì_	2N3415.pdf	22-Dec-99 00:00	22K	
<u>[</u>]_	2N3416.pdf	22-Dec-99 00:00	24K	
Ľì_	2N3417.pdf	22-Dec-99 00:00	24K	
Ľì_	2N3663.pdf	29-Jan-00 00:00	29K	
Ľì_	2N3702.pdf	22-Dec-99 00:00	23K	
Ľì_	2N3703.pdf	22-Dec-99 00:00	22K	
[j_	2N3704.pdf	22-Dec-99 00:00	23K	
<u>[</u>]_	2N3859A.pdf	22-Dec-99 00:00	22K	
<u>[</u>]_	2N3903.pdf	22-Dec-99 00:00	34K	
Ľì_	2N3904.pdf	11-Feb-00 00:00	64K	
Ľì_	2N3905.pdf	22-Dec-99 00:00	26K	
<u>[</u>]_	2N3906.pdf	22-Dec-99 00:00	49K	
Ŀ`_	2N4123.pdf	22-Dec-99 00:00	32K	
<u>[</u>]_	2N4124.pdf	22-Dec-99 00:00	93K	
[``	2N4125.pdf	22-Dec-99 00:00	23K	
<u>[</u>]	2N4126.pdf	22-Dec-99 00:00	94K	
[``_	2N4400.pdf	22-Dec-99 00:00	42K	
<u>[</u>]_	2N4401.pdf	22-Dec-99 00:00	29K	

 .				
Ŀ.	2N4402.pdf	22-Dec-99	00:00	26K
D,	2N4403.pdf	22-Dec-99	00:00	42K
D,	2N4410.pdf	22-Dec-99	00:00	24K
D.	2N4953.pdf	22-Dec-99	00:00	24K
D.	2N5086.pdf	22-Dec-99	00:00	58K
D.	2N5087.pdf	22-Dec-99	00:00	58K
D.	2N5088.pdf	22-Dec-99	00:00	211K
D,	2N5089.pdf	22-Dec-99	00:00	211K
D,	2N5172.pdf	22-Dec-99	00:00	23К
D,	2N5210.pdf	22-Dec-99	00:00	77K
D,	2N5306.pdf	22-Dec-99	00:00	23К
D,	2N5307.pdf	22-Dec-99	00:00	23K
D,	2N5308.pdf	22-Dec-99	00:00	23K
D,	2N5400.pdf	22-Dec-99	00:00	24K
D.	2N5401.pdf	22-Dec-99	00:00	109K
D.	2N5457.pdf	22-Dec-99	00:00	105K
D.	2N5458.pdf	22-Dec-99	00:00	105K
D.	2N5459.pdf	22-Dec-99	00:00	105K
D.	<u>2N5460.pdf</u>	01-Feb-00	00:00	522K
D.	2N5461.pdf	01-Feb-00	00:00	522K
D.	2N5462.pdf	01-Feb-00	00:00	522K
D.	<u>2N5484.pdf</u>	22-Dec-99	00:00	73K
D.	<u>2N5485.pdf</u>	22-Dec-99	00:00	73K
D.	2N5486.pdf	22-Dec-99	00:00	73K
D,	2N5550.pdf	22-Dec-99	00:00	28K
D.	<u>2N5551.pdf</u>	22-Dec-99	00:00	110K
D)	- 2N5769.pdf	22-Dec-99	00:00	26K
	—			

Ŀì_	2N5770.pdf	22-Dec-99	00:00	25K
<u> </u>	2N5771.pdf	22-Dec-99	00:00	126K
[``	2N5830.pdf	22-Dec-99	00:00	24K
[``	2N5961.pdf	22-Dec-99	00:00	25K
<u> </u>	2N5962.pdf	22-Dec-99	00:00	41K
[``_	2N6076.pdf	22-Dec-99	00:00	18K
[``	2N6426.pdf	22-Dec-99	00:00	25K
[``	2N6427.pdf	22-Dec-99	00:00	93K
[``_	2N6428.pdf	06-Dec-99	00:00	30K
[``	2N6428A.pdf	06-Dec-99	00:00	30K
[``_	2N6428_6428A.pdf	17-Apr-99	00:00	32K
[``	2N6515.pdf	22-Dec-99	00:00	53K
[``_	2N6516.pdf	22-Dec-99	00:00	31K
[``	2N6517.pdf	22-Dec-99	00:00	31K
[``_	2N6518.pdf	22-Dec-99	00:00	32K
[``_	2N6519.pdf	22-Dec-99	00:00	32K
[``_	2N6520.pdf	22-Dec-99	00:00	90K
[``	2N7000.pdf	05-Feb-00	00:00	538K
[``	2N7002.pdf	05-Feb-00	00:00	538K
[``	2N7052.pdf	22-Dec-99	00:00	42K
[``	2N7053.pdf	22-Dec-99	00:00	42K

Discrete POWER & Signal **Technologies**

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 10. See PN100A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	25	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	500	mA
TJ, Tsta	Operating and Storage Junction Temperature Range	-55 to +150	۰C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Мах	Units
		2N3390 / 3391/A / 3392 / 3393	
P _D	Total Device Dissipation	625	mW
	Derate above 25°C	5.0	mW/°C
R _{0JC}	Thermal Resistance, Junction to Case	83.3	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

0	nt	tin	u	e	d)

Parameter	Test Conditions	Min	Max	Units
			1	
Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	25		V
Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu A, \ I_{\rm E} = 0$	25		V
Emitter-Base Breakdown Voltage	$I_E = 10 \ \mu A, \ I_C = 0$	5.0		V
Collector-Cutoff Current	$V_{CB} = 18 \text{ V}, I_E = 0$		100	nA
Emitter-Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_{C} = 0$		100	nA
RACTERISTICS* DC Current Gain	V _{CE} = 4.5 V, I _C = 2.0 mA 2N3390	400 250	800 500	
	ARACTERISTICS Collector-Emitter Breakdown Voltage* Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector-Cutoff Current Emitter-Cutoff Current	ARACTERISTICS Collector-Emitter Breakdown $I_C = 10 \text{ mA}, I_B = 0$ Voltage* $I_C = 10 \text{ µA}, I_E = 0$ Collector-Base Breakdown Voltage $I_C = 10 \text{ µA}, I_C = 0$ Emitter-Base Breakdown Voltage $I_E = 10 \text{ µA}, I_C = 0$ Collector-Cutoff Current $V_{CB} = 18 \text{ V}, I_E = 0$ Emitter-Cutoff Current $V_{EB} = 5.0 \text{ V}, I_C = 0$ RACTERISTICS* DC Current Gain	Collector-Emitter Breakdown I _C = 10 mA, I _B = 0 25 Collector-Base Breakdown Voltage I _C = 10 μ A, I _E = 0 25 Emitter-Base Breakdown Voltage I _E = 10 μ A, I _C = 0 5.0 Collector-Cutoff Current V _{CB} = 18 V, I _E = 0 5.0 Emitter-Cutoff Current V _{EB} = 5.0 V, I _C = 0 5.0 RACTERISTICS* DC Current Gain V _{CE} = 4.5 V, I _C = 2.0 mA	ARACTERISTICSCollector-Emitter Breakdown Voltage*I_C = 10 mA, I_B = 025Collector-Base Breakdown VoltageI_C = 10 μ A, I_E = 025Emitter-Base Breakdown VoltageI_E = 10 μ A, I_C = 05.0Collector-Cutoff CurrentV_{CB} = 18 V, I_E = 0100Emitter-Cutoff CurrentV_{EB} = 5.0 V, I_C = 0100RACTERISTICS*DC Current GainV_{CE} = 4.5 V, I_C = 2.0 mA

SMALL SIGNAL CHARACTERISTICS

C _{ob}	Output Capacitance	V _{CB} = 10 V, f = 1.0 MHz	2.0	10	pF
h _{fe}	Small-Signal Current Gain	$ I_{C} = 2.0 \text{ mA}, V_{CE} = 4.5 \text{ V}, \\ f = 1.0 \text{ kHz} \qquad 2N3390 \\ 2N3391/A \\ 2N3392 \\ 2N3393 $	400 250 150 90	1250 800 500 400	
NF	Noise Figure			5.0	dB

*Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty}~\text{Cycle} \leq 2.0\%$

2N3390 / 2N3391 / 2N3391A / 2N3392 / 2N3393

2N3415

FAIRCHILD SEMICONDUCTOR TM

2N3415

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 10. See PN100A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	25	V
Vcbo	Collector-Base Voltage	25	V
V _{EBO}	Emitter-Base Voltage	5.0	V
lc	Collector Current - Continuous	500	mA
TJ, Tstg	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Thermal Characteristics TA = 25°C unless otherwise noted				
Symbol	Characteristic	Max	Units	
		2N3415		
PD	Total Device Dissipation	625	mW	
	Derate above 25°C	5.0	mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W	

NPN General Purpose Amplifie (continued

nplifier continued)	2N3415
------------------------	--------

Parameter CTERISTICS Dilector-Emitter Breakdown Ditage*	Test Conditions $I_{\rm C}$ = 10 mA, $I_{\rm B}$ = 0	Min 25	Мах	Units
ollector-Emitter Breakdown oltage*	I _C = 10 mA, I _B = 0	25		
bltage*	$I_{\rm C} = 10$ mA, $I_{\rm B} = 0$	25		
allesten Dese Dreeledeure Veltere		20		V
ollector-Base Breakdown Voltage	$I_{C} = 10 \ \mu A, I_{E} = 0$	25		V
nitter-Base Breakdown Voltage	I _E = 10 μA, I _C = 0	5.0		V
bllector-Cutoff Current	$V_{CB} = 25 \text{ V}, I_E = 0$ $V_{CB} = 25 \text{ V}, I_E = 0, T_A = 100^{\circ}\text{C}$		0.1 15	μΑ μΑ
nitter-Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_{C} = 0$		0.1	μA
TERISTICS*	$V_{CE} = 4.5 \text{ V}, I_{C} = 2.0 \text{ mA}$	180	540	1
ollector-Emitter Saturation Voltage	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 3.0 \text{ mA}$	100	0.3	V
ase-Emitter Saturation Voltage	$I_{\rm C} = 50$ mA, $I_{\rm B} = 3.0$ mA	0.6	1.3	V
as	e-Emitter Saturation Voltage			e-Emitter Saturation Voltage $I_{C} = 50 \text{ mA}, I_{B} = 3.0 \text{ mA}$ 0.6 1.3

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

Discrete POWER & Signal Technologies

2N3416 2N3417

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 10. See PN100A for characteristics.

Absolute Maximum Ratings*

Symbol Units Parameter Value Collector-Emitter Voltage 50 VCEO V V V_{CBO} Collector-Base Voltage 50 Emitter-Base Voltage 5.0 V V_{EBO} I_{C} Collector Current - Continuous 500 mΑ T_J, T_{stg} Operating and Storage Junction Temperature Range -55 to +150 °C

TA = 25°C unless otherwise noted

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

CS	TA = 25°C unless otherwise noted	

Symbol	Characteristic	Мах	Units
		2N3416 / 2N3417	_
PD	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

Electri	ical Characteristics TA	= 25°C unless otherwise noted			
Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10$ mA, $I_{\rm B} = 0$	50		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu A, \ I_{\rm E} = 0$	50		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	5.0		V
I _{СВО}	Collector-Cutoff Current	$V_{CB} = 25 \text{ V}, I_E = 0$ $V_{CB} = 18 \text{ V}, I_E = 0, T_A = 100^{\circ}\text{C}$		100 15	nA μA
ЕВО	Emitter-Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_{C} = 0$		100	nA

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$V_{CE} = 4.5 \text{ V}, I_{C} = 2.0 \text{ mA}$			
		2N3416	75	225	
		2N3417	180	540	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 50 \text{ mA}, I_{B} = 3.0 \text{ mA}$		0.3	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{C} = 50 \text{ mA}, I_{B} = 3.0 \text{ mA}$	0.6	1.3	V

SMALL SIGNAL CHARACTERISTICS

h _{fe}	Small-Signal Current Gain	$I_{\rm C} = 2.0 \text{ mA}, V_{\rm CE}$	= 4.5 V,		
		f = 1.0 kHz	2N3416	75	
			2N3417	180	

*Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

2N3416 / 2N3417

2N3663

NPN RF Transistor

This device is designed for use as RF amplifiers, oscillators and multipliers with collector currents in the 1.0 mA to 30 mA range. Sourced from Process 43. See PN918 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	12	V
V _{CBO}	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	3.0	V
I _C	Collector Current - Continuous	50	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Мах	Units
		2N3663	
P _D	Total Device Dissipation	350	mW
	Derate above 25°C	2.8	mW/°C
$R_{\theta_{JC}}$	Thermal Resistance, Junction to Case	125	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W

NPN RF Transistor

(continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	12		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$	30		V
/ _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 100 \ \mu {\rm A}, \ I_{\rm C} = 0$	3.0		V
СВО	Collector-Cutoff Current	$V_{CB} = 15 \text{ V}, \text{ I}_{E} = 0$		0.5	μA
EBO	Emitter-Cutoff Current	$V_{EB} = 2.0 \text{ V}, I_{C} = 0$		0.5	μA
h _{FE}	DC Current Gain	$V_{CE} = 10 \text{ V}, I_{C} = 8.0 \text{ mA}$	20		
	RACTERISTICS*	V = 10 V I = 80 mA	20	1	
SMALL SI	GNAL CHARACTERISTICS				
fT	Current Gain - Bandwidth Product	$I_{C} = 5.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	700	2100	MHz
C _{ob}					
	Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$	0.8	1.7	pF
	Output Capacitance Collector Base Time Constant	$V_{CB} = 10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$ $I_C = 8.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 79.8 \text{ MHz}$	0.8	1.7 80	pF pS
		$I_{\rm C} = 8.0 {\rm mA}, {\rm V}_{\rm CE} = 10 {\rm V},$	0.8		· ·
rb'C _C		$I_{\rm C} = 8.0 {\rm mA}, {\rm V}_{\rm CE} = 10 {\rm V},$	0.8		· ·
^{rb'C} c FUNCTIO	Collector Base Time Constant	$I_c = 8.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 79.8 MHz $I_c = 1.0 \text{ mA}, V_{CE} = 6.0 \text{ V},$	0.8		· ·
rb'C _c FUNCTIO	Collector Base Time Constant	I _C = 8.0 mA, V _{CE} = 10 V, f = 79.8 MHz	0.8	80	pS
rb'C _c FUNCTIO NF G _{pe}	Collector Base Time Constant NAL TEST Noise Figure Amplifier Power Gain	$\begin{split} I_{c} &= 8.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f &= 79.8 \text{ MHz} \end{split}$ $I_{c} &= 1.0 \text{ mA}, \text{ V}_{CE} = 6.0 \text{ V}, \\ f &= 60 \text{ MHz}, \text{ Rg} = 400 \Omega \\ I_{c} &= 6.0 \text{ mA}, \text{ V}_{CE} = 12 \text{ V}, \end{split}$		80	pS dB
rb'C _c FUNCTIO NF G _{pe}	Collector Base Time Constant NAL TEST Noise Figure	$\begin{split} I_{c} &= 8.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f &= 79.8 \text{ MHz} \end{split}$ $I_{c} &= 1.0 \text{ mA}, \text{ V}_{CE} = 6.0 \text{ V}, \\ f &= 60 \text{ MHz}, \text{ Rg} = 400 \Omega \\ I_{c} &= 6.0 \text{ mA}, \text{ V}_{CE} = 12 \text{ V}, \end{split}$		80	pS dB
rb'C _c FUNCTIO NF G _{pe}	Collector Base Time Constant NAL TEST Noise Figure Amplifier Power Gain	$\begin{split} I_{c} &= 8.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f &= 79.8 \text{ MHz} \end{split}$ $I_{c} &= 1.0 \text{ mA}, \text{ V}_{CE} = 6.0 \text{ V}, \\ f &= 60 \text{ MHz}, \text{ Rg} = 400 \Omega \\ I_{c} &= 6.0 \text{ mA}, \text{ V}_{CE} = 12 \text{ V}, \end{split}$		80	pS dB

2N3663

2N3702

PNP General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 68. See PN200 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

I A = 25°C unless otherwise noted	

Symbol	Characteristic	Мах	Units
		2N3702	-
P _D	Total Device Dissipation	625	mW
	Derate above 25°C	5.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

PNP General Purpose Amplifier (continued)

Electri	cal Characteristics	S TA = 25°C unless otherwise noted			
Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{C} = 100 \mu A, I_{B} = 0$	25		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 100 \ \mu {\rm A}, \ I_{\rm C} = 0$	5.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, I_E = 0$		100	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		100	nA

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}$	60	300	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA		0.25	V
V _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 50 \text{ mA}$	0.6	1.0	V

SMALL SIGNAL CHARACTERISTICS

C _{ob}	Output Capacitance	V _{CB} = 10 V, f = 1.0 MHz		12	pF
f _T	Current Gain - Bandwidth Product	$I_{C} = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}$	100		MHz

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

2N3702

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Discrete POWER & Signal **Technologies**

2N3703

FAIRCHILD SEMICONDUCTOR IM

2N3703

PNP General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 68. See PN200 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	30	V
V _{CBO}	Collector-Base Voltage	50	V
V_{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thormal Characteristics

menn	TA = 25°C unless otherwise noted				
Symbol	Characteristic	Мах	Units		
		2N3703			
Pn	Total Device Dissipation	625	mW		

P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
R _{θJC}	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

PNP General Purpose Amplifier (continued)

Electrical Characteristics TA = 25°C unless otherwise noted					
Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10$ mA, $I_{\rm B} = 0$	30		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, I_{\rm E} = 0$	50		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \ \mu A, I_C = 0$	5.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, \text{ I}_{E} = 0$		100	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		100	nA

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$V_{CE} = 5.0 V, I_{C} = 50 mA$	30	150	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$		0.25	V
V _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 5.0 V, I_{C} = 50 mA$	0.6	1.0	V

SMALL SIGNAL CHARACTERISTICS

C _{ob}	Output Capacitance	$V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		12	pF
fT	Current Gain - Bandwidth Product	$I_{C} = 50 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 20 MHz	100		MHz

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

2N3704

2N3704

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 10. See PN100 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	30	V
V _{CBO}	Collector-Base Voltage	50	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Character

ristics	TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		2N3704	
P _D	Total Device Dissipation	625	mW
	Derate above 25°C	5.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

Electri	cal Characteristics	TA = 25°C unless otherwise noted			
Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	30		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, \ I_{E} = 0$	50		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 100 \ \mu A, \ I_{C} = 0$	5.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, I_E = 0$		100	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		100	nA

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$V_{CE} = 2.0 \text{ V}, I_{C} = 50 \text{ mA}$	100	300	
V _{BE(on)}	Base-Emitter ON Voltage	$V_{CE} = 2.0 \text{ V}, I_{C} = 100 \text{ mA}$	0.5	1.0	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 100 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$		0.6	V

SMALL SIGNAL CHARACTERISTICS

C _{ob}	Output Capacitance	V _{CB} = 10 V, f = 1.0 MHz		12	pF
f _T	Current Gain - Bandwidth Product	$I_{C} = 50 \text{ mA}, V_{CE} = 2.0 \text{ V},$	100		MHz

*Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

2N3859A

2N3859A

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 10. See PN100 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	60	V
V _{CBO}	Collector-Base Voltage	60	V
V_{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Thermal Characteristics TA = 25°C unless otherwise noted				
Symbol	Characteristic	Мах	Units	
		2N3859A		
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction to Case	83.3	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W	

NPN General Purpose Amplifier (continued)

Electri	cal Characteristics TA =	TA = 25°C unless otherwise noted			
Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	60		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, I_{\rm E} = 0$	60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 100 \ \mu A, I_{C} = 0$	6.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 18 \text{ V}, I_E = 0$		0.5	μΑ
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$		0.5	μΑ

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$V_{CE} = 1.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	75		
		$V_{CE} = 1.0 \text{ V}, I_{C} = 10 \text{ mA}$	100	200	

SMALL SIGNAL CHARACTERISTICS

Cob	Output Capacitance	$V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		4	pF
f _T	Current Gain - Bandwidth Product	$I_{\rm C}$ = 2.0 mA, $V_{\rm CE}$ = 10 V	90	250	MHz
rb'C _c	Collector - Base Time Constant	$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 2.0 \text{ mA},$ f = 31.9 MHz		150	pS

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

Discrete POWER & Signal **Technologies**

2N3903

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 100 mA. Sourced from Process 23. See 2N3904 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V_{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

ISTICS	TA = 25°C unless otherwise noted	

Symbol	Characteristic	Max	Units
		2N3903	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \mu {\rm A}, I_{\rm E} = 0$	60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \mu {\rm A}, I_{\rm C} = 0$	6.0		V
I _{CEX}	Collector Cutoff Current	V _{CE} = 30 V, V _{OB} = 3.0 V		50	nA
I _{BL}	Base Cutoff Current	V _{CE} = 30 V, V _{OB} = 3.0 V		50	nA
ONCHAR	ACTERISTICS*				
h _{FE}	DC Current Gain	$V_{CE} = 1.0 \text{ V}, I_{C} = 0.1 \text{ mA}$	20		
		$V_{CE} = 1.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	35		
		$V_{CE} = 1.0 \text{ V}, I_C = 10 \text{ mA}$	50	150	
		$V_{CE} = 1.0 \text{ V}, I_C = 50 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_C = 100 \text{ mA}$	30 15		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.2	V
		$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$	0.05	0.3	V V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$	0.65	0.85 0.95	V
C _{ob}	IGNAL CHARACTERISTICS Output Capacitance	$V_{CB} = 5.0 \text{ V}, \text{ f} = 100 \text{ kHz}$		4.0	рF
C _{ib}	Input Capacitance	V _{EB} = 0.5 V, f = 100 kHz		8.0	pF
h _{fe}	Small-Signal Current Gain	$I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	2.5		
h _{fe}	Small-Signal Current Gain	$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}$	50	200	
	Input Impedance	f = 1.0 kHz	1.0	8.0	kΩ
h _{ie}			0.1	5.0	x 10 ⁻⁴
	Voltage Feedback Ratio		10	40	μmhos
h _{re}	Voltage Feedback Ratio Output Admittance		1.0	-	1
h _{ie} h _{re} h _{oe} NF	<u> </u>	$V_{CE} = 5.0 \text{ V}, I_C = 100 \mu\text{A}, \\ R_S = 1.0 k\Omega, \\ B_W = 10 Hz \text{ to } 15.7 \text{kHz}$	1.0	6.0	dB
h _{re} h _{oe} NF	Output Admittance	$R_s = 1.0 k\Omega$,	1.0		•
h _{re} h _{oe} NF SWITCHI	Output Admittance Noise Figure	$R_s = 1.0 k\Omega$,	1.0		•
h _{re} h _{oe} NF	Output Admittance Noise Figure NG CHARACTERISTICS	$\label{eq:Rs} \begin{array}{l} R_{\text{S}} = 1.0 \; \text{k}\Omega, \\ B_{\text{W}} = 10 \; \text{Hz} \; \; \text{to} \; 15.7 \; \text{kHz} \end{array}$	1.0	6.0	dB
h _{re} h _{oe} NF SWITCHI	Output Admittance Noise Figure NG CHARACTERISTICS Delay Time	$R_{\rm S} = 1.0 \ \text{k}\Omega, \\ B_{\rm W} = 10 \ \text{Hz} \ \text{to} \ 15.7 \ \text{kHz} $ $V_{\rm CC} = 3.0 \ \text{V}, \ \text{I}_{\rm C} = 10 \ \text{mA}, \ \ \text{mA}, \ \ \text{Max}$	1.0	6.0 35	dB

2N3903

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier. Sourced from Process 23.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

NPN General Purpose Amplifier

(continued)

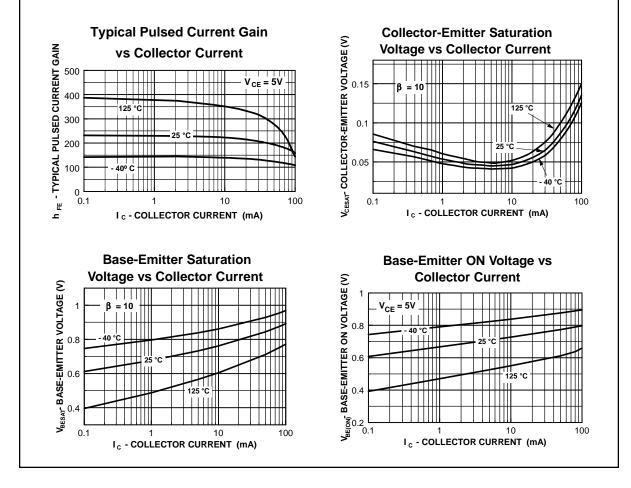
Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu \text{A}, \ I_{\rm E} = 0$	60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu A, \ I_{\rm C} = 0$	6.0		V
I _{BL}	Base Cutoff Current	$V_{CE} = 30 \text{ V}, \text{ V}_{EB} = 0$		50	nA
I _{CEX}	Collector Cutoff Current	$V_{CE} = 30 \text{ V}, \text{ V}_{EB} = 0$		50	nA
	ACTERISTICS*		40		
h _{FE}	DC Current Gain	$I_{C} = 0.1 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$	40 70		
		$I_{c} = 10 \text{ mA}, V_{cE} = 1.0 \text{ V}$	100	300	
		$I_{\rm C} = 50 \text{ mA}, V_{\rm CE} = 1.0 \text{ V}$	60		
		10 00 110 1, 10E 110 1			
		$I_{\rm C} = 100$ mA, $V_{\rm CE} = 1.0$ V	30		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$	30	0.2	V
		$ I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} $		0.3	V V V
	Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	$I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$	30 0.65	-	-
V _{BE(sat)} SMALL SI		$\begin{split} I_{C} &= 100 \text{ mA}, \ V_{CE} &= 1.0 \text{ V} \\ I_{C} &= 10 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 5.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 5.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 5.0 \text{ mA} \\ \end{split}$		0.3 0.85	V V
V _{BE(sat)} SMALL SI	Base-Emitter Saturation Voltage	$\begin{array}{l} I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \end{array}$	0.65	0.3 0.85	V V V
$\frac{V_{CE(sat)}}{V_{BE(sat)}}$ $\frac{SMALL SI}{f_{T}}$ $\frac{C_{obo}}{C_{ibo}}$	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product	$\begin{split} I_{C} &= 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \end{split}$	0.65	0.3 0.85 0.95	V V V MHz
$V_{BE(sat)}$ SMALL SI f_T C _{obo}	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance	$\begin{split} I_{C} &= 100 \text{ mA}, \ V_{CE} &= 1.0 \text{ V} \\ I_{C} &= 10 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 5.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 5.0 \text{ mA} \\ \end{split}$	0.65	0.3 0.85 0.95 4.0	V V V MHz
V _{BE(sat)} SMALL SI f _T C _{obo} C _{ibo} NF	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance	$\begin{split} I_{C} &= 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \end{split}$	0.65	0.3 0.85 0.95 4.0 8.0	V V V MHz pF
V _{BE(sat)} SMALL SI f _T C _{obo} C _{ibo} NF SWITCHI	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance Noise Figure (except MMPQ3904)	$\begin{split} I_{C} &= 100 \text{ mA}, \ V_{CE} &= 1.0 \text{ V} \\ I_{C} &= 10 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 5.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 5.0 \text{ mA} \\ \end{split}$	0.65	0.3 0.85 0.95 4.0 8.0	V V V MHz pF
V _{BE(sat)} SMALL SI f _T Cobo Cibo NF SWITCHI	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance Noise Figure (except MMPQ3904) NG CHARACTERISTICS (except N	$\begin{split} I_{C} &= 100 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \end{split}$	0.65	0.3 0.85 0.95 4.0 8.0 5.0	V V V MHz pF pF dB
V _{BE(sat)} SMALL SI f _T C _{obo} C _{ibo} NF	Base-Emitter Saturation Voltage GNAL CHARACTERISTICS Current Gain - Bandwidth Product Output Capacitance Input Capacitance Noise Figure (except MMPQ3904) NG CHARACTERISTICS (except MDPQ3904) Delay Time	$\begin{split} I_{C} &= 100 \text{ mA}, \ V_{CE} &= 1.0 \text{ V} \\ I_{C} &= 10 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 5.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, \ I_{B} &= 5.0 \text{ mA} \\ \end{split}$	0.65	0.3 0.85 0.95 4.0 8.0 5.0 35	V V V MHz pF pF dB

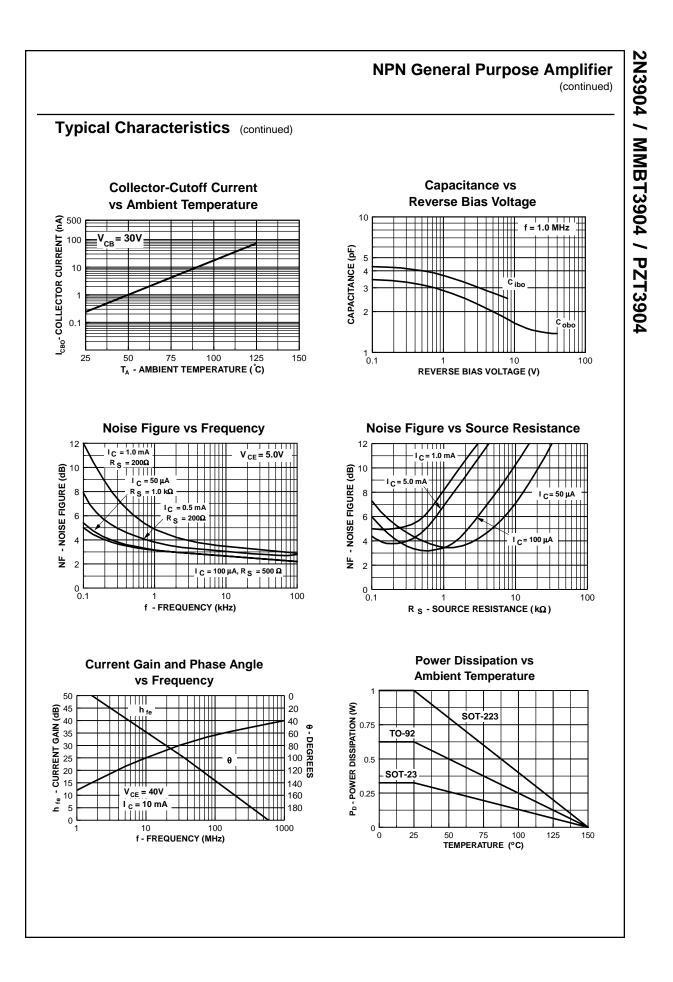
Spice Model

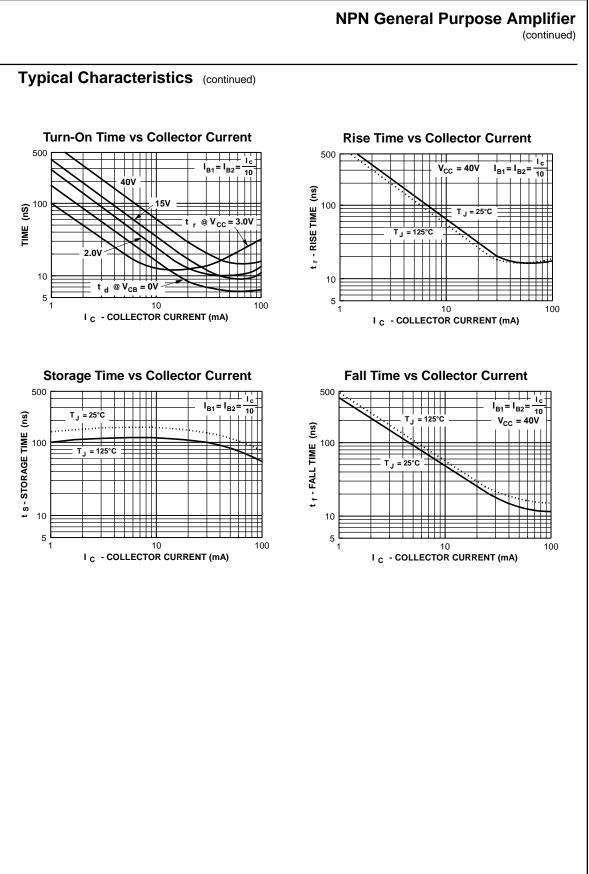
NPN (Is=6.734f Xti=3 Eg=1.11 Vaf=74.03 Bf=416.4 Ne=1.259 Ise=6.734 Ikf=66.78m Xtb=1.5 Br=.7371 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=3.638p Mjc=.3085 Vjc=.75 Fc=.5 Cje=4.493p Mje=.2593 Vje=.75 Tr=239.5n Tf=301.2p Itf=.4 Vtf=4 Xtf=2 Rb=10)

NPN General Purpose Amplifier (continued)

	(COI	ntinue

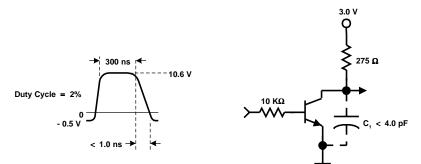

Symbol	Characteristic Max		Units	
		2N3904	*PZT3904	
P _D	Total Device Dissipation	625	1,000	mW
	Derate above 25°C	5.0	8.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	125	°C/W

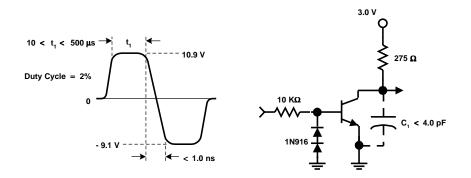

Symbol	Characteristic	Max		Units
		**MMBT3904	MMPQ3904	
PD	Total Device Dissipation	350	1,000	mW
	Derate above 25°C	2.8	8.0	mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357		°C/W
	Effective 4 Die		125	°C/W
	Each Die		240	°C/W


*Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm².

**Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

Typical Characteristics




2N3904 / MMBT3904 / PZT3904

Test Circuits

FIGURE 1: Delay and Rise Time Equivalent Test Circuit

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

2N3905

2N3905

PNP General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 100 mA. Sourced from Process 66. See 2N3906 for characteristics.

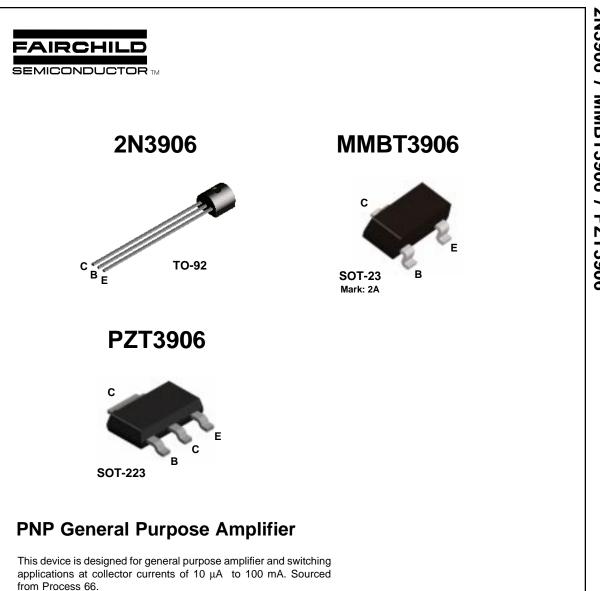
Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V_{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.


Thermal Characteristics

Thermal Characteristics TA = 25°C unless otherwise noted				
Symbol	Characteristic	Max	Units	
		2N3905		
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W	
R _{θJA}	Thermal Resistance, Junction to Ambient	200	°C/W	

PNP General Purpose Amplifier (continued)

	Parameter	Test Conditions	Min	Мах	Units
	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CEO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \mu{\rm A}, I_{\rm E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_c = 10 \mu\text{A}, I_c = 0$	5.0		V
	Collector Cutoff Current	$V_{\rm E} = 30 \text{ V}, V_{\rm OB} = 3.0 \text{ V}$	5.0	50	nA
I _{CEX} I _{BL}	Base Cutoff Current	$V_{CE} = 30 \text{ V}, V_{OB} = 3.0 \text{ V}$ $V_{CE} = 30 \text{ V}, V_{OB} = 3.0 \text{ V}$		50	nA
IBL		VCE - 30 V, VOB - 3.0 V		00	
ON CHAR	ACTERISTICS*				
h _{FE}	DC Current Gain	$V_{CE} = 1.0 \text{ V}, I_{C} = 0.1 \text{ mA}$	30		
		$V_{CE} = 1.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_{C} = 10 \text{ mA}$	40 50	150	
		$V_{CE} = 1.0 \text{ V}, \text{ Ic} = 10 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, \text{ Ic} = 50 \text{ mA}$	30	150	
		$V_{CE} = 1.0 \text{ V}, I_C = 100 \text{ mA}$	15		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.25	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$ $I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$	0.65	0.40 0.85	V V
v BE(Sat)	Base Emilier Galaralion Voltage	$I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA	0.00	0.85	v
C _{ob}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		4.5	рF
C _{ib}	Output Capacitance Input Capacitance	V _{EB} = 0.5 V, f = 1.0 MHz	2.0	4.5 10	pF pF
C _{ob} C _{ib}	Output Capacitance Input Capacitance Small-Signal Current Gain	$V_{EB} = 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	2.0	10	
C _{ob} C _{ib} hfe	Output Capacitance Input Capacitance Small-Signal Current Gain Small-Signal Current Gain	$V_{EB} = 0.5 \text{ V}, f = 1.0 \text{ MHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz $I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$	50	10 200	pF
C _{ob} C _{ib} hŕe hŕe	Output Capacitance Input Capacitance Small-Signal Current Gain Small-Signal Current Gain Voltage Feedback Ratio	$V_{EB} = 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	50 0.1	10 200 5.0	pF
C _{ob} C _{ib} hŕe hŕe	Output Capacitance Input Capacitance Small-Signal Current Gain Small-Signal Current Gain Voltage Feedback Ratio Input Impedance	$V_{EB} = 0.5 \text{ V}, f = 1.0 \text{ MHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz $I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$	50 0.1 0.5	10 200 5.0 8.0	pF
C _{ob} C _{ib} hfe hfe hre hie hoe	Output Capacitance Input Capacitance Small-Signal Current Gain Small-Signal Current Gain Voltage Feedback Ratio Input Impedance Output Impedance	$V_{EB} = 0.5 \text{ V}, f = 1.0 \text{ MHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V}, f = 100 \text{ MHz}$ $I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ KHz}$	50 0.1	10 200 5.0 8.0 40	pF x10 ⁻⁴ kΩ μmhos
SMALL S C _{ob} Cib hfe hfe hre hoe NF	Output Capacitance Input Capacitance Small-Signal Current Gain Small-Signal Current Gain Voltage Feedback Ratio Input Impedance	$\begin{split} V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 20 \text{ V}, \\ \text{f} &= 100 \text{ MHz} \\ I_{C} &= 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ \text{f} &= 1.0 \text{ KHz} \\ \end{split}$	50 0.1 0.5	10 200 5.0 8.0	pF
C _{ob} C _{ib} hfe hfe h _{re} h _{ie} h _{oe} NF	Output Capacitance Input Capacitance Small-Signal Current Gain Small-Signal Current Gain Voltage Feedback Ratio Input Impedance Output Impedance Noise Figure	$V_{EB} = 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ $f = 100 \text{ MHz}$ $I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$ $f = 1.0 \text{ KHz}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A},$	50 0.1 0.5	10 200 5.0 8.0 40	pF x10 ⁻⁴ kΩ μmhos
Cob Cib hfe hfe hre hie hoe NF	Output Capacitance Input Capacitance Small-Signal Current Gain Small-Signal Current Gain Voltage Feedback Ratio Input Impedance Output Impedance	$\begin{split} V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 20 \text{ V}, \\ \text{f} &= 100 \text{ MHz} \\ I_{C} &= 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ \text{f} &= 1.0 \text{ KHz} \\ \end{split}$	50 0.1 0.5	10 200 5.0 8.0 40	pF x10 ⁻⁴ kΩ μmhos
C _{ob} C _{ib} hfe hfe hre hie hoe NF SWITCHI	Output Capacitance Input Capacitance Small-Signal Current Gain Small-Signal Current Gain Voltage Feedback Ratio Input Impedance Output Impedance Noise Figure	$\begin{split} V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ I_C &= 10 \text{ mA}, V_{CE} = 20 \text{ V}, \\ \hline f &= 100 \text{ MHz} \\ I_C &= 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, \\ \hline f &= 1.0 \text{ KHz} \\ \end{split}$	50 0.1 0.5	10 200 5.0 8.0 40 5.0	pF x10 ⁻⁴ kΩ μmhos dB
C _{ob} C _{ib} hre hre hre hie h _{oe} NF	Output Capacitance Input Capacitance Small-Signal Current Gain Small-Signal Current Gain Voltage Feedback Ratio Input Impedance Output Impedance Noise Figure NG CHARACTERISTICS Delay Time	$\begin{split} V_{EB} &= 0.5 \text{ V}, \text{ f} = 1.0 \text{ MHz} \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 20 \text{ V}, \\ f &= 100 \text{ MHz} \\ I_{C} &= 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f &= 1.0 \text{ KHz} \\ \end{split}$	50 0.1 0.5	10 200 5.0 8.0 40 5.0 35	pF x10 ⁻⁴ kΩ μmhos dB

2N3905

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

PNP General Purpose Amplifier

(continued)

Electrical Characteristics TA = 25°C unless otherwise noted						
Symbol	Parameter	Test Conditions	Min	Max	Units	
OFF CHA	RACTERISTICS					
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	40		V	

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	40		V	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu A, \ I_{\rm E} = 0$	40		V	
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	5.0		V	
I _{BL}	Base Cutoff Current	$V_{CE} = 30 \text{ V}, \text{ V}_{BE} = 3.0 \text{ V}$		50	nA	
I _{CEX}	Collector Cutoff Current	$V_{CE} = 30 \text{ V}, \text{ V}_{BE} = 3.0 \text{ V}$		50	nA	

ON CHARACTERISTICS

h _{FE}	DC Current Gain *	I _C = 0.1 mA, V _{CE} = 1.0 V	60		
		$I_{\rm C} = 1.0 \text{ mA}, V_{\rm CE} = 1.0 \text{ V}$	80		
		$I_{\rm C} = 10 \text{ mA}, V_{\rm CE} = 1.0 \text{ V}$	100	300	
		$I_{c} = 50 \text{ mA}, V_{ce} = 1.0 \text{ V}$	60		
		$I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$	30		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.25	V
- ()		$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$		0.4	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$	0.65	0.85	V
		$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$		0.95	V

SMALL SIGNAL CHARACTERISTICS

f _⊤	Current Gain - Bandwidth Product	$I_{c} = 10 \text{ mA}, V_{ce} = 20 \text{ V},$ f = 100 MHz	250		MHz
C _{obo}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, I_E = 0,$ f = 100 kHz		4.5	pF
C _{ibo}	Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_{C} = 0,$ f = 100 kHz		10.0	pF
NF	Noise Figure (except MMPQ3906)	I_{c} = 100 μA, V_{ce} = 5.0 V, R _s =1.0kΩ, f=10 Hz to 15.7 kHz		4.0	dB

SWITCHING CHARACTERISTICS (except MMPQ3906)

t _d	Delay Time	$V_{CC} = 3.0 \text{ V}, \text{ V}_{BE} = 0.5 \text{ V},$	35	ns
tr	Rise Time	I _C = 10 mA, I _{B1} = 1.0 mA	35	ns
ts	Storage Time	$V_{CC} = 3.0 \text{ V}, \text{ I}_{C} = 10 \text{ mA}$	225	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 1.0 \text{ mA}$	75	ns

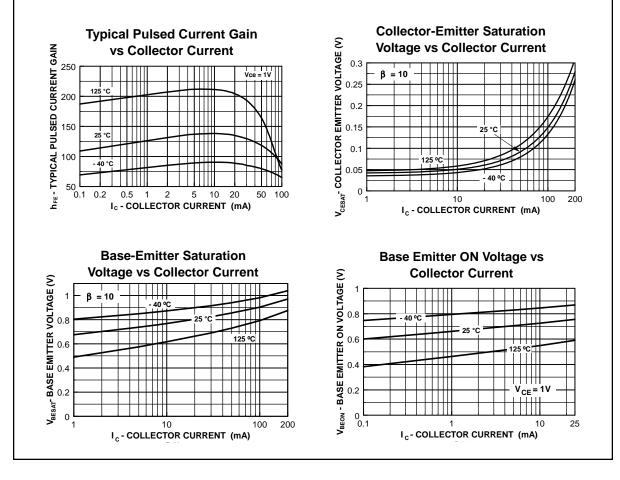
*Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

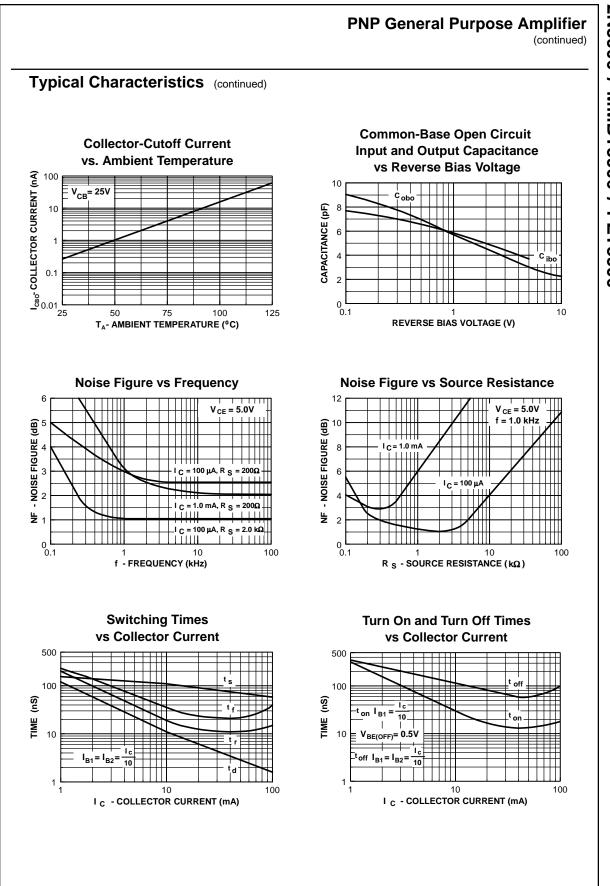
Spice Model

PNP (Is=1.41f Xti=3 Eg=1.11 Vaf=18.7 Bf=180.7 Ne=1.5 Ise=0 Ikf=80m Xtb=1.5 Br=4.977 Nc=2 Isc=0 Ikr=0 Rc=2.5 Cjc=9.728p Mjc=.5776 Vjc=.75 Fc=.5 Cje=8.063p Mje=.3677 Vje=.75 Tr=33.42n Tf=179.3p Itf=.4 Vtf=4 Xtf=6 Rb=10)

PNP General Purpose Amplifier

(continued)

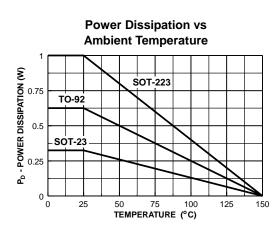

Symbol	Characteristic	N	Max	
		2N3906	*PZT3906	
P _D	Total Device Dissipation	625	1,000	mW
	Derate above 25°C	5.0	8.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	125	°C/W


Symbol	Characteristic	М	Max	
		**MMBT3906	MMPQ3906	
P _D	Total Device Dissipation	350	1,000	mW
	Derate above 25°C	2.8	8.0	mW/∘C
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	357		°C/W
	Effective 4 Die		125	°C/W
	Each Die		240	°C/W

*Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm².

**Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

Typical Characteristics



2N3906 / MMBT3906 / PZT3906

2N3906 / MMBT3906 / PZT3906

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

2N4123

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 100 mA. Sourced from Process 23. See 2N3904 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	30	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Therm	al Characteristics TA = 25°C unless otherwise	e noted	
Symbol	Characteristic	Max	Units
		2N4123	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

	Symbol	Parameter	Test Conditions	Min	Max	Units
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	OFF CHA	RACTERISTICS				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	30		V
Constraint	V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 10 \ \mu A, I_{E} = 0$	40		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	√ _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu {\rm A}, \ I_{\rm C} = 0$	5.0		V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	СВО	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, \text{ I}_{E} = 0$		50	nA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EBO	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
$\begin{array}{c c} C_{CE(sat)} & Collector-Emitter Saturation Voltage & I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} & 0.3 & V \\ \hline I_{BE(sat)} & Base-Emitter Saturation Voltage & I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} & 0.95 & V \\ \hline SMALL SIGNAL CHARACTERISTICS & & & & & & & & & & & & & & & & & & &$					150	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	Collector-Emitter Saturation Voltage	$V_{CE} = 1.0 \text{ V}, I_C = 50 \text{ mA}$	25	03	V
SMALL SIGNAL CHARACTERISTICSCobOutput Capacitance $V_{CB} = 5.0 \text{ V}, f = 100 \text{ kHz}$ 4.0pFCibInput Capacitance $V_{EB} = 0.5 \text{ V}, f = 0.1 \text{ MHz}$ 8.0pFMreSmall-Signal Current Gain $I_C = 2.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$ 50200TCurrent Gain - Bandwidth Product $I_C = 10 \text{ mA}, V_{CE} = 20 \text{ V}, f = 100 \text{ MHz}$ 2.5MHzNFNoise Figure $V_{CE} = 5.0 \text{ V}, I_C = 100 \mu A, R_S = 1.0 k\Omega, f = 1.0 k\Omega, f$		-				-
$ \begin{array}{c c} & Small-Signal Current Gain \\ \hline h_{fe} \\ \hline m \\ \hline m$	SMALLS	IGNAL CHARACTERISTICS				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{CB} = 5.0 V, f = 100 kHz		4.0	pF
$\label{eq:restricted_restriction} \begin{array}{c c} T & Current Gain - Bandwidth Product & I_C = 10 \text{mA}, V_{CE} = 20 V & 250 & \text{MHz} \\ \hline f = 100 \text{MHz} & V_{CE} = 5.0 \text{V}, I_C = 100 \mu\text{A}, & 6.0 & \text{dB} \\ \hline NF & Noise Figure & V_{CE} = 5.0 \text{V}, I_C = 100 \mu\text{A}, & 6.0 & \text{dB} \\ \hline R_S = 1.0 \text{k}\Omega, & \end{array}$	C _{ob}	Output Capacitance				-
$R_{\rm S} = 1.0 \ \mathrm{k}\Omega$	C _{ob} C _{ib}	Output Capacitance Input Capacitance	$\begin{split} V_{EB} &= 0.5 \text{ V}, \text{ f} = 0.1 \text{ MHz} \\ I_{C} &= 2.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ \text{f} &= 1.0 \text{ kHz} \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 20 \text{ V}, \end{split}$		8.0	-
	C _{ob} C _{ib} Yfe	Output Capacitance Input Capacitance Small-Signal Current Gain	$\begin{split} V_{EB} &= 0.5 \text{ V}, \text{ f} = 0.1 \text{ MHz} \\ I_{C} &= 2.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ \text{f} &= 1.0 \text{ kHz} \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 20 \text{ V}, \\ \text{f} &= 100 \text{ MHz} \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 20 \text{ V} \end{split}$	2.5	8.0	pF

NPN General Purpose Amplifier

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier. Sourced from Process 23. See 2N3904 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	5.0	V
lc	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

 $\underline{\text{NOTES}}$: 1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units	
		2N4124	*MMBT4124		
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C	
R _{eJC}	Thermal Resistance, Junction to Case	83.3		°C/W	
$R_{\theta_{JA}}$	Thermal Resistance, Junction to Ambient	200	357	°C/W	

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

Symbol	Parameter	Test Conditions	Min	Мах	Units
OFF CHA	ARACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	25		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, I_{\rm E} = 0$	30		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, I_{\rm C} = 0$	5.0		V
сво	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, \text{ I}_{E} = 0$		50	nA
EBO	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
ON CHAI	RACTERISTICS*				
h _{FE}	DC Current Gain	$I_{\rm C}$ = 2.0 mA, $V_{\rm CE}$ = 1.0 V	120	360	
		$I_{\rm C} = 50 \text{ mA}, V_{\rm CE} = 1.0 \text{ V}$	60		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$		0.3	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA		0.95	V
SMALL S	IGNAL CHARACTERISTICS				
SMALL S	IGNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{c} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	300		MHz
f _T		f = 100 MHz V _{CB} = 5.0 V, I _E = 0,	300	4.0	MHz pF
f _T Cobo	Current Gain - Bandwidth Product		300	4.0	
	Current Gain - Bandwidth Product Output Capacitance		300	-	pF
f _T C _{obo} C _{ibo}	Current Gain - Bandwidth Product Output Capacitance Input Capacitance		300	8.0	pF pF

2N4124 / MMBT4124

2N4125

PNP General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents of 10 μA to 100 mA. Sourced from Process 66. See 3906 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

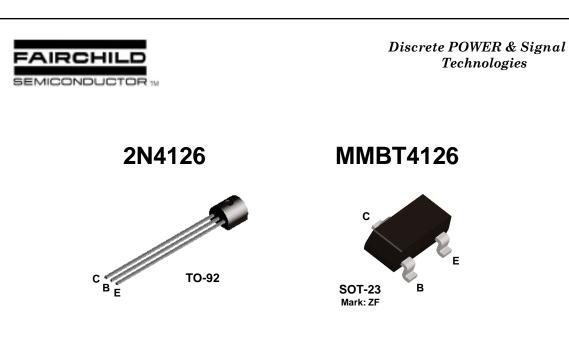
Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	30	V
Vcbo	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	4.0	V
lc	Collector Current - Continuous	200	mA
TJ, Tstg	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

ormal Characteristics


Inerm	al Characteristics TA = 25°C unless otherwise	noted	
Symbol	Characteristic	Max	Units
		2N4125	
PD	Total Device Dissipation	625	mW

PD	Total Device Dissipation	625	mW
	Derate above 25°C	5.0	mW/°C
R _{0JC}	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

PNP General Purpose Ampli

ifier inued)	2N412
	5

Symbol	Parameter	Test Conditions	Min	Max	Units
	DAGTERIOTICO				
	RACTERISTICS			1	
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0$ mA, $I_{\rm B} = 0$	30		V
/ _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu A, \ I_{\rm E} = 0$	30		V
/(BR)EBO	Emitter-Base Breakdown Voltage	$I_E = 10 \ \mu A, \ I_C = 0$	4.0		V
СВО	Collector-Cutoff Current	$V_{CB} = 20 \text{ V}, I_E = 0$		50	nA
EBO	Emitter-Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
	RACTERISTICS* DC Current Gain	$V_{CE} = 1.0 \text{ V}, I_C = 2.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_C = 50 \text{ mA}$	50 25	150	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA}$		0.4	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA		0.95	V
SMALL S	IGNAL CHARACTERISTICS				
	IGNAL CHARACTERISTICS	$V_{00} = 5.0 \text{ V} \text{ f} = 100 \text{ kHz}$		45	nF
Cob	Output Capacitance	V _{CB} = 5.0 V, f = 100 kHz V _{BE} = 0.5 V, f = 100 kHz		4.5 10	pF pF
C _{ob} C _{ib}	Output Capacitance Input Capacitance	V _{BE} = 0.5 V, f = 100 kHz		4.5 10	pF pF
C _{ob} C _{ib}	Output Capacitance	$V_{BE} = 0.5 \text{ V}, \text{ f} = 100 \text{ kHz}$ I _C = 2.0 mA, V _{CE} = 10 V, f = 1.0 kHz I _C = 10 mA, V _{CE} = 20 V,	50		-
C _{ob} C _{ib} h _{fe}	Output Capacitance Input Capacitance Small-Signal Current Gain	$V_{BE} = 0.5 \text{ V}, f = 100 \text{ kHz}$ $I_{C} = 2.0 \text{ mA}, V_{CE} = 10 \text{ V},$ $f = 1.0 \text{ kHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ $f = 100 \text{ MHz}$	50 2.0	10 200	pF
C _{ob} C _{ib}	Output Capacitance Input Capacitance	$V_{BE} = 0.5 \text{ V}, f = 100 \text{ kHz}$ $I_{C} = 2.0 \text{ mA}, V_{CE} = 10 \text{ V},$ $f = 1.0 \text{ kHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$		10	-

PNP General Purpose Amplifier

This device is designed for general purpose amplifier and switching applications at collector currents to 10 µA as a switch and to 100 mA as an amplifier. Sourced from Process 66. See 2N3906 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	25	V
V _{EBO}	Emitter-Base Voltage	4.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Symbol	Characteristic	Max		Units
		2N4126	*MMBT4126	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
R _{0JC}	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta_{JA}}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

TA= 25°C unless otherwise noted

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

Electri	cal Characteristics TA	= 25°C unless otherwise noted			
Symbol	Parameter	Test Conditions	Min	Max	Units

OFF CHARACTERISTICS

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 1.0$ mA, $I_{\rm B} = 0$	25		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$	25		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, I_{\rm C} = 0$	4.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, I_E = 0$		50	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$I_{C} = 2.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V}$	120 60	360	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$		0.4	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA		0.95	V

SMALL SIGNAL CHARACTERISTICS

f _T	Current Gain - Bandwidth Product	$I_{c} = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	250		MHz
Cibo	Input Capacitance	$V_{EB} = 0.5 \text{ V}, I_{C} = 0,$ f = 1.0 MHz		10	pF
C _{cb}	Collector-Base Capcitance	$V_{CB} = 5.0 \text{ V}, I_E = 0,$ f = 100 kHz		4.5	pF
h _{fe}	Small-Signal Current Gain	$I_{C} = 2.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$	120	480	
NF	Noise Figure	$I_c = 100 \mu\text{A}, V_{CE} = 5.0 \text{V},$ R _s =1.0 kΩ, f=10 Hz to 15.7 kHz		4.0	dB

*Pulse Test: Pulse Width $\leq 300~\mu\text{s},~\text{Duty}~\text{Cycle} \leq 2.0\%$

Discrete POWER & Signal **Technologies**

2N4400

MMBT4400

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 500 mA. Sourced from Process 19. See PN2222A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	1.0	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

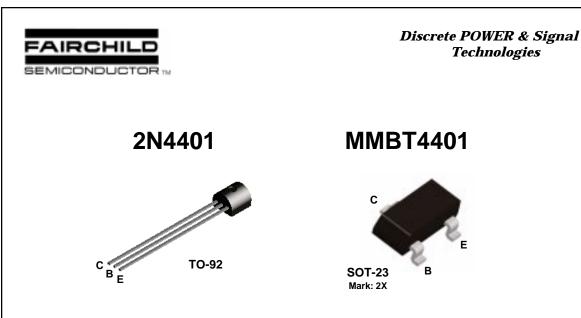
Symbol	Characteristic	N	Мах	
		2N4400	*MMBT4400	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{ extsf{ heta}_{JC}}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

Electrical Characteristics TA = 25°C unless otherwise noted								
Symbol	Parameter	Test Conditions	Min	Мах	Units			
OFF CHA	RACTERISTICS							
V	Collector-Emitter Breakdown Voltage*	$l_{z} = 10 \text{ mA} \ l_{z} = 0$	40		V			

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$	60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 100 \ \mu {\rm A}, \ I_{\rm C} = 0$	6.0		V
I _{CEX}	Collector Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μΑ
I _{BL}	Emitter Cutoff Current	$V_{CE} = 35 \text{ V}, V_{EB} = 0.4 \text{ V}$		0.1	μA

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$V_{CE} = 1.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	20		
		$V_{CE} = 1.0 \text{ V}, I_{C} = 10 \text{ mA}$	40		
		$V_{CE} = 1.0 \text{ V}, I_{C} = 150 \text{ mA}$	50	150	
		$V_{CE} = 2.0 \text{ V}, I_{C} = 500 \text{ mA}$	20		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _c = 150 mA, I _B =15 mA		0.40	V
- ()		$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$		0.75	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 150 mA, I _B =15 mA	0.75	0.95	V
()	_	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$		1.2	V


SMALL SIGNAL CHARACTERISTICS

C _{ob}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, \text{ f} = 140 \text{ kHz}$		6.5	pF
C _{ib}	Input Capacitance	V _{EB} = 0.5 V, f = 140 kHz		30	pF
h _{fe}	Small-Signal Current Gain	$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	2.0		
h _{fe}	Small-Signal Current Gain	$V_{CE} = 10 \text{ V}, I_C = 1.0 \text{ mA},$	20	250	
h _{ie}	Input Impedance	f = 1.0 kHz	0.5	7.5	KΩ
h _{re}	Voltage Feedback Ratio		0.1	8.0	x 10 ⁻⁴
h _{oe}	Output Admittance		1.0	30	μmhos

SWITCHING CHARACTERISTICS

t _d	Delay Time	$V_{\rm CC} = 30 \text{ V}, \text{ I}_{\rm C} = 150 \text{ mA},$	15	ns
tr	Rise Time	$I_{B1} = 15 \text{ mA}$, $V_{BE(off)} = 0.0 \text{ V}$	20	ns
ts	Storage Time	$V_{\rm CC} = 30 \text{ V}, \text{ I}_{\rm C} = 150 \text{ mA}$	225	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 15 \text{ mA}$	30	ns

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

NPN General Purpose Amplifier

This device is designed for use as a medium power amplifier and switch requiring collector currents up to 500 mA. Sourced from Process 19. See PN2222A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	6.0	V
Ic	Collector Current - Continuous	1.0	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Ν	lax	Units
		2N4401	*MMBT4401	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{ ext{ hetaJA}}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	/ 20 / 40 80 V 100 V 40 A A 0.75 A 250	0.1 0.1 0.1 300 0.4 0.75 0.95 1.2 6.5 30 15	V V μA μA V V MHz pF pF kΩ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	60 6.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.1 300 0.4 0.75 0.95 1.2 6.5 30	V μA μA V PF pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	60 6.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.1 300 0.4 0.75 0.95 1.2 6.5 30	V μA μA V V W V PF pF
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6.0 7 20 40 40 80 V 100 V 40 A A 0.75 250 , 1.0	0.1 300 0.4 0.75 0.95 1.2 6.5 30	μΑ μΑ ν ν ν ν ν ν ν ν ν ν ν ν ν
$\begin{array}{c c} V_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V} \\ \hline V_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V} \\ \hline V_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V} \\ \hline V_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V} \\ \hline V_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V} \\ \hline I_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 1.0 \text{ V} \\ I_{C} = 150 \text{ mA}, \text{ V}_{CE} = 1.0 \text{ V} \\ I_{C} = 500 \text{ mA}, \text{ V}_{CE} = 2.0 \text{ V} \\ \hline I_{C} = 500 \text{ mA}, \text{ I}_{B} = 15 \text{ mA} \\ \hline I_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline I_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline I_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline I_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline I_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline V_{CB} = 5.0 \text{ V}, \text{ I}_{E} = 0, \\ \hline f = 140 \text{ MHz} \\ \hline V_{CB} = 5.0 \text{ V}, \text{ I}_{E} = 0, \\ \hline f = 140 \text{ KHz} \\ \hline V_{BE} = 0.5 \text{ V}, \text{ I}_{C} = 0, \\ \hline f = 140 \text{ KHz} \\ \hline I_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ \hline f = 1.0 \text{ KHz} \\ \hline \end{array}$	/ 20 / 40 80 V 100 V 40 A A A 0.75 A 250	0.1 300 0.4 0.75 0.95 1.2 6.5 30	μA μA V V V V V V MHz pF pF
$\begin{array}{c} I_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V} \\ \hline \text{V}_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V} \\ \hline \text{I}_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 1.0 \text{ V} \\ \hline \text{I}_{C} = 10 \text{ mA}, \text{ V}_{CE} = 1.0 \text{ V} \\ \hline \text{I}_{C} = 150 \text{ mA}, \text{ V}_{CE} = 1.0 \text{ V} \\ \hline \text{I}_{C} = 500 \text{ mA}, \text{ V}_{CE} = 2.0 \text{ V} \\ \hline \text{I}_{C} = 500 \text{ mA}, \text{ V}_{CE} = 2.0 \text{ V} \\ \hline \text{I}_{C} = 500 \text{ mA}, \text{ I}_{B} = 15 \text{ mA} \\ \hline \text{I}_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline \text{I}_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline \text{I}_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline \text{I}_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline \text{I}_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline \text{I}_{C} = 500 \text{ mA}, \text{ I}_{B} = 50 \text{ mA} \\ \hline \text{I}_{C} = 100 \text{ MHZ} \\ \hline \text{V}_{CB} = 5.0 \text{ V}, \text{ I}_{E} = 0, \\ \hline \text{f} = 140 \text{ kHZ} \\ \hline \text{V}_{BE} = 0.5 \text{ V}, \text{ I}_{C} = 0, \\ \hline \text{f} = 140 \text{ kHZ} \\ \hline \text{I}_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ \hline \text{f} = 1.0 \text{ kHZ} \\ \hline \end{array}$	/ 20 / 40 80 V 100 V 40 A A 0.75 A 250	300 0.4 0.75 0.95 1.2 6.5 30	μA μA V V V V V V F pF
$\begin{array}{c} I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 150 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 500 \text{ mA}, V_{CE} = 2.0 \text{ V} \\ I_{C} = 500 \text{ mA}, I_{B} = 15 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{C} = 10 \text{ V}, \\ f = 100 \text{ MHz} \\ \hline \\ V_{CB} = 5.0 \text{ V}, I_{E} = 0, \\ f = 140 \text{ kHz} \\ \hline \\ V_{BE} = 0.5 \text{ V}, I_{C} = 0, \\ f = 140 \text{ kHz} \\ \hline \\ I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \hline \end{array}$	/ 40 80 V 100 V 40 A A A A A A A C.75 A Z50	0.4 0.75 0.95 1.2 6.5 30	V V V MHz pF pF
$\begin{array}{c} I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 150 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 500 \text{ mA}, V_{CE} = 2.0 \text{ V} \\ I_{C} = 500 \text{ mA}, I_{B} = 15 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{C} = 10 \text{ V}, \\ f = 100 \text{ MHz} \\ \hline \\ V_{CB} = 5.0 \text{ V}, I_{E} = 0, \\ f = 140 \text{ kHz} \\ \hline \\ V_{BE} = 0.5 \text{ V}, I_{C} = 0, \\ f = 140 \text{ kHz} \\ \hline \\ I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \hline \end{array}$	/ 40 80 V 100 V 40 A A A A A A A C.75 A Z50	0.4 0.75 0.95 1.2 6.5 30	V V V MHz pF pF
$\begin{array}{c} I_{C} = 1.0 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 150 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 500 \text{ mA}, V_{CE} = 2.0 \text{ V} \\ I_{C} = 500 \text{ mA}, I_{B} = 15 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 100 \text{ mA}, I_{C} = 10 \text{ V}, \\ f = 100 \text{ MHz} \\ \hline \\ V_{CB} = 5.0 \text{ V}, I_{E} = 0, \\ f = 140 \text{ kHz} \\ \hline \\ V_{BE} = 0.5 \text{ V}, I_{C} = 0, \\ f = 140 \text{ kHz} \\ \hline \\ I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \hline \end{array}$	/ 40 80 V 100 V 40 A A A A A A A C.75 A Z50	0.4 0.75 0.95 1.2 6.5 30	V V V MHz pF pF
$\begin{array}{c} I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 150 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 500 \text{ mA}, V_{CE} = 2.0 \text{ V} \\ I_{C} = 500 \text{ mA}, I_{B} = 15 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 150 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{E} = 0, \\ I_{C} = 100 \text{ mHz} \\ V_{CB} = 5.0 \text{ V}, I_{E} = 0, \\ f = 140 \text{ kHz} \\ V_{BE} = 0.5 \text{ V}, I_{C} = 0, \\ f = 140 \text{ kHz} \\ I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \end{array}$	80 V 100 V 40 A 0.75 A 0.75 A 0.75 A 0.75 A 0.75 A 1.0	0.4 0.75 0.95 1.2 6.5 30	V V V MHz pF pF
$\begin{array}{c c} I_{C} = 500 \text{ mA}, V_{CE} = 2.0 \text{ N}\\ I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}\\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}\\ I_{C} = 150 \text{ mA}, I_{B} = 50 \text{ mA}\\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}\\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}\\ \hline \\ \textbf{CS}\\ \hline \\ \textbf{UCt} & I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},\\ f = 100 \text{ MHz}\\ \hline \\ V_{CB} = 5.0 \text{ V}, I_{E} = 0,\\ f = 140 \text{ kHz}\\ \hline \\ V_{BE} = 0.5 \text{ V}, I_{C} = 0,\\ f = 140 \text{ kHz}\\ \hline \\ I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},\\ f = 1.0 \text{ kHz}\\ \hline \end{array}$	V 40 A 0.75 250 , 1.0	0.4 0.75 0.95 1.2 6.5 30	V V V MHz pF pF
$\begin{array}{llllllllllllllllllllllllllllllllllll$	250 , 1.0	0.75 0.95 1.2 6.5 30	V V V MHz pF pF
$\begin{array}{c c} I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA} \\ I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ \hline I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA} \\ \hline \\ $	250 , 1.0	0.95 1.2 6.5 30	V V MHz pF pF
$\begin{tabular}{ c c c c c } \hline I_{C} &= 500 \text{ mA}, I_{B} &= 50 \text{ mA} \\ \hline CS \\ \hline Iuct & I_{C} &= 20 \text{ mA}, V_{CE} &= 10 \text{ V}, \\ \hline f &= 100 \text{ MHz} \\ \hline V_{CB} &= 5.0 \text{ V}, I_{E} &= 0, \\ \hline f &= 140 \text{ kHz} \\ \hline V_{BE} &= 0.5 \text{ V}, I_{C} &= 0, \\ \hline f &= 140 \text{ kHz} \\ \hline I_{C} &= 1.0 \text{ mA}, V_{CE} &= 10 \text{ V}, \\ \hline f &= 1.0 \text{ kHz} \\ \hline \end{tabular}$	250	6.5 30	MHz pF pF
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	250	6.5	MHz pF pF
$\label{eq:constraint} \begin{array}{c} f = 100 \text{ MHz} \\ V_{CB} = 5.0 \text{ V}, I_E = 0, \\ f = 140 \text{ kHz} \\ \end{array} \\ \begin{array}{c} V_{BE} = 0.5 \text{ V}, I_C = 0, \\ f = 140 \text{ kHz} \\ \end{array} \\ \begin{array}{c} I_C = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \end{array} \end{array}$, 1.0	30	pF pF
$f = 140 \text{ kHz}$ $V_{BE} = 0.5 \text{ V}, I_{C} = 0,$ $f = 140 \text{ kHz}$ $I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$ $f = 1.0 \text{ kHz}$		30	pF
f = 1.0 kHz		15	kΩ
$l_{c} = 1.0 \text{ mA} \text{ V}_{cr} = 10 \text{ V}$			
f = 1.0 kHz		8.0	x 10 ⁻⁴
$I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$		500	
$I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz}$	<i>'</i> , 1.0	30	μmhos
		15	ns
			ns
			ns
		30	ns
	V _{CC} = 30 V, V _{EB} = 0.2 V I _C = 150 mA, I _{B1} = 15 m	$V_{CC} = 30 \text{ V}, \text{ V}_{EB} = 0.2 \text{ V},$ $I_{C} = 150 \text{ mA}, I_{B1} = 15 \text{ mA}$ $V_{CC} = 30 \text{ V}, I_{C} = 150 \text{ mA}$	$V_{CC} = 30 \text{ V}, \text{ V}_{EB} = 0.2 \text{ V},$ 15 $I_C = 150 \text{ mA}, I_{B1} = 15 \text{ mA}$ 20 $V_{CC} = 30 \text{ V}, I_C = 150 \text{ mA}$ 225

2N4401 / MMBT4401

2N4402

2N4402

PNP General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 500 mA. Sourced from Process 63. See PN2907A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	800	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Therm	al Characteristics TA = 25°C unless otherwise	e noted	
Symbol	Characteristic	Max	Units
		2N4402	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	200	°C/W

	N
r	Ζ
d)	4
u)	4
	0
	Ν

Symbol	Parameter	Test Conditions	Min	Max	Units
				1	
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 100 \ \mu {\rm A}, I_{\rm C} = 0$	5.0		V
CEX	Collector Cutoff Current	$V_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V}$		0.1	μΑ
BL	Base Cutoff Current	$V_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V}$		0.1	μA
ΥE		$V_{CE} = 1.0 \text{ V}, I_C = 10 \text{ mA}$ $V_{CE} = 2.0 \text{ V}, I_C = 150 \text{ mA}$	50 50	150	
h _{FE}	RACTERISTICS*	$V_{CE} = 1.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	30		
				150	
		$V_{CE} = 2.0 \text{ V}, I_C = 500 \text{ mA}$	20	100	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 150 \text{ mA}, I_{\rm B} = 15 \text{ mA}$		0.40	V
\/	Base-Emitter Saturation Voltage	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$ $I_{\rm C} = 150 \text{ mA}, I_{\rm B} = 15 \text{ mA}$	0.75	0.75 0.95	V V
V _{BE(sat)}	Dase-Emilier Saturation Voltage	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$	0.75	1.30	v
SMALL S	IGNAL CHARACTERISTICS				
Cob	Output Capacitance	$V_{CB} = 10 \text{ V}, \text{ f} = 140 \text{ kHz}$		8.5	pF
Cib	Input Capacitance	V _{EB} = 0.5 V, f = 140 kHz		30	pF
Դ _{fe}	Small-Signal Current Gain	$I_{c} = 20 \text{ mA}, V_{ce} = 10 \text{ V},$ f = 100 MHz	1.5		
Դ _{fe}	Small-Signal Current Gain	$I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$	30	250	
lie	Input Impedance	f = 1.0 kHz	0.75	7.5	kΩ
n _{re}	Voltage Feedback Ratio		0.10	8.0	x10 ⁻⁴

SWITCHING CHARACTERISTICS

t _d	Delay Time	$V_{CC} = 30 \text{ V}, \text{ I}_{C} = 150 \text{ mA},$	15	ns
tr	Rise Time	$I_{B1} = 15 \text{ mA}, V_{BE (off)} = 2.0 \text{ V}$	20	ns
ts	Storage Time	$V_{CC} = 30 \text{ V}, \text{ I}_{C} = 150 \text{ mA},$	225	ns
t _f	Fall Time	$I_{B1} = I_{B2} = 15 \text{ mA}$	30	ns

*Pulse Test: Pulse Width $\leq 300~\mu s,~\text{Duty}~\text{Cycle} \leq 2.0\%$

PNP General Purpose Amplifier

This device is designed for use as a general purpose amplifier and switch requiring collector currents to 500 mA. Sourced from Process 63. See PN2907A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
VCEO	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	45	V
VEBO	Emitter-Base Voltage	5.0	V
lc	Collector Current - Continuous	800	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Symbol	Characteristic	м	ax	Units
		2N4403	*MMBT4403	
PD	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/⁰C
R _{0JC}	Thermal Resistance, Junction to Case	83.3		°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient	200	357	°C/W

TA = 25°C unless otherwise noted

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

	ical Characteristics TA	= 25°C unless otherwise noted			
Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 0.1 \text{ mA}, I_{\rm E} = 0$	45		V
V(BR)EBO	Emitter-Base Breakdown Voltage	$I_E = 0.1 \text{ A}, I_C = 0$	5.0		V
BEX	Base Cutoff Current	$V_{CE} = 35 \text{ V}, \text{ V}_{EB} = 0.4 \text{ V}$		0.1	μA
CEX	Collector Cutoff Current	V _{CE} = 35 V, V _{BE} = 0.4 V		0.1	μA
V _{CE(sat)}	Collector-Emitter Saturation	$ \begin{array}{l} I_{C} = 10 \text{ mA}, V_{CE} = 1.0 \text{ V} \\ I_{C} = 150 \text{ mA}, V_{CE} = 2.0 \text{ V}^{*} \\ I_{C} = 500 \text{ mA}, V_{CE} = 2.0 \text{ V}^{*} \\ I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA} \end{array} $	100 100 20	300 0.4	V
				300	
	Voltage*	$I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$ $I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}^{*}$	0.75	0.75	
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}^{\circ}$ $I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}^{\circ}$	0.75	0.95 1.3	V
т С _{сb}	GNAL CHARACTERISTICS Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance	$I_{C} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz $V_{CB} = 10 \text{ V}, I_{E} = 0,$ f = 140 kHz $V_{BE} = 0.5 \text{ V}, I_{C} = 0,$ f = 140 kHz	200	8.5 30	MHz pF pF
T Ccb Ceb	Current Gain - Bandwidth Product Collector-Base Capacitance	$\label{eq:constraint} \begin{array}{l} f = 100 \; \text{MHz} \\ V_{CB} = 10 \; \text{V}, \; I_E = 0, \\ f = 140 \; \text{kHz} \end{array}$	200		pF
T Cob Ceb Nie	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance			30	pF pF
T Cob Ceb Nie	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain		1.5 0.1 60	30 15 8.0 500	pF pF kΩ
T Cob Ceb Die Die Die Die	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio		1.5	30 15 8.0	pF pF kΩ x 10 ⁻⁴
T Ceb Deb Nie Nre Nfe	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain		1.5 0.1 60	30 15 8.0 500	pF pF kΩ x 10 ⁻⁴
r Ceb Deb lie Ire Ife SWITCHIN	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance		1.5 0.1 60	30 15 8.0 500	pF pF kΩ x 10 ⁻⁴
T Ceb Deb Nie Nre Nre SWITCHIN d	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance	$\begin{array}{l} f = 100 \text{ MHz} \\ V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0, \\ f = 140 \text{ kHz} \\ V_{BE} = 0.5 \text{ V}, \text{ I}_{C} = 0, \\ f = 140 \text{ kHz} \\ \text{ I}_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \text{ I}_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \text{ I}_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \text{ I}_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \text{ I}_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \text{ I}_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \text{ I}_{C} = 1.0 \text{ mA}, \text{ V}_{CE} = 10 \text{ V}, \\ f = 1.0 \text{ kHz} \\ \text{ I}_{C} = 1$	1.5 0.1 60	30 15 8.0 500 100	pF pF kΩ x 10 ⁻⁴
fr Ccb Ceb hie hre hfe hoe	Current Gain - Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance Input Impedance Voltage Feedback Ratio Small-Signal Current Gain Output Admittance		1.5 0.1 60	30 15 8.0 500 100	pF pF kΩ x 10 ⁻⁴ μmhos

2N4403 / MMBT4403

2N4410

2N4410

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 50 mA. Sourced from Process 16. See 2N5551 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	80	V
V _{CBO}	Collector-Base Voltage	120	V
V_{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Therm	al Characteristics TA = 25°C unless otherwise	e noted	
Symbol	Characteristic	Max	Units
		2N4410	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

Symbol	Parameter	Test Conditions	Min	Мах	Units
				·	-
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 {\rm mA}, I_{\rm B} = 0$	80		V
V _{(BR)CEX}	Collector-Emitter Breakdown Voltage	$I_{C} = 500 \ \mu A, V_{BB} = 5.0 \ V$ $R_{BE} = 8.2 \ k\Omega$	120		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$	120		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, I_{C} = 0$	5.0		V
І _{сво}	Collector Cutoff Current	$V_{CB} = 100 \text{ V}, I_E = 0$ $V_{CB} = 100 \text{ V}, I_E = 0, T_A = 100 ^{\circ}\text{C}$	10 1.0		nA μA
ЕВО	Emitter Cutoff Current	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$	100		nA
ON CHAF	Emitter Cutoff Current RACTERISTICS* DC Current Gain	$V_{CE} = 1.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}$	100 60 60	400	nA
ON CHAF	RACTERISTICS*		60	400 0.2	nA
ON CHAF h _{FE} V _{CE(sat)}	RACTERISTICS*	$V_{CE} = 1.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, \text{ I}_{C} = 10 \text{ mA}$	60		
I _{EBO} ON CHAF h _{FE} V _{CE(sat)} V _{BE(sat)} V _{BE(on)}	RACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage	$V_{CE} = 1.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, \text{ I}_{C} = 10 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, \text{ I}_{B} = 0.1 \text{ mA}$	60	0.2	V
ON CHAF h _{FE} V _{CE(sat)} V _{BE(sat)} V _{BE(on)} SMALL S	RACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage Base-Emitter On Voltage	$V_{CE} = 1.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_{C} = 10 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	60	0.2 0.8 0.8	V V V
ON CHAF	RACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter On Voltage Base-Emitter On Voltage GIGNAL CHARACTERISTICS Output Capacitance	$V_{CE} = 1.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_{C} = 10 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CB} = 10 \text{ V}, f = 100 \text{ kHz}$	60	0.2 0.8	VVV
ON CHAR hfe V _{CE(sat)} V _{BE(on)}	RACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage Base-Emitter On Voltage	$V_{CE} = 1.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_{C} = 10 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	60	0.2 0.8 0.8	V V V

*Pulse Test: Pulse Width $\leq 300~\mu s,~\text{Duty}~\text{Cycle} \leq 2.0\%$

2N4953

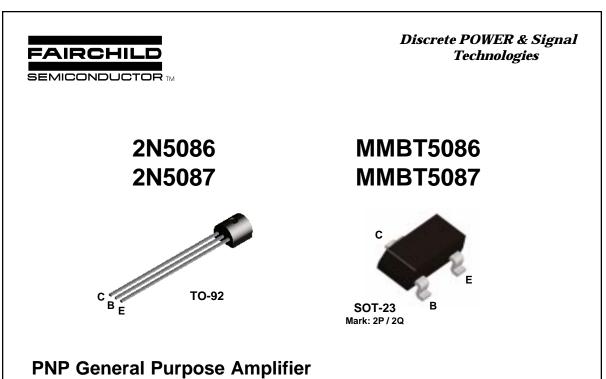
NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 500 mA. Sourced from Process 19. See PN2222A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	30	V
V _{CBO}	Collector-Base Voltage	60	V
V_{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	1.0	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.


NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		2N4953	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

OFF CHARACTERISTICS V(BR)CEO Collector-Emitter Breakdown Voltage* I _c =10 mA, I _B = 0 30 0 V(BR)CBO Collector-Base Breakdown Voltage I _c = 10 μ A, I _E = 0 60 0 V(BR)EBO Emitter-Base Breakdown Voltage I _E = 10 μ A, I _C = 0 5.0 0 V(BR)EBO Emitter-Base Breakdown Voltage I _E = 10 μ A, I _C = 0 5.0 0 Collector Cutoff Current V _{CB} = 40 V, I _E = 0 50 50 0 VEBO Emitter Cutoff Current V _{CB} = 40 V, I _C = 0 50 0 NEBO Emitter Cutoff Current V _{CE} = 10 V, I _C = 1.0 mA 75 0 VEBO Emitter Cutoff Current V _{CE} = 10 V, I _C = 10 mA 75 0 VCE(sat) Collector-Emitter Saturation Voltage I _C = 150 mA, I _B = 15 mA 0.3 0.3 VBE(sat) Base-Emitter Saturation Voltage I _C = 10 V, I _C = 150 mA 1.3 0 VBE(on) Base-Emitter On Voltage V _{CE} = 10 V, I _C = 150 mA 1.2 0 SMALL SIGNAL CHARACTERISTICS Cob Output Capacitance V _{CE} = 10 V, I = 10 V, I = 10 V, I = 10 V,	Symbol	Parameter	Test Conditions	Min	Max	Units
$V_{(BR)CEO}$ Collector-Emitter Breakdown Voltage* $I_C = 10 \text{ mA}, I_B = 0$ 30 30 $V_{(BR)CBO}$ Collector-Base Breakdown Voltage $I_C = 10 \text{ µA}, I_E = 0$ 60 60 $V_{(BR)CBO}$ Emitter-Base Breakdown Voltage $I_E = 10 \text{ µA}, I_C = 0$ 5.0 60 $V_{(BR)EBO}$ Emitter-Base Breakdown Voltage $I_E = 10 \text{ µA}, I_C = 0$ 5.0 60 Cao Collector Cutoff Current $V_{CB} = 40 \text{ V}, I_E = 0$ 50 50 EBO Emitter Cutoff Current $V_{CB} = 3.0 \text{ V}, I_C = 0$ 50 50 ON CHARACTERISTICS* OL Current Gain $V_{CE} = 10 \text{ V}, I_C = 1.0 \text{ mA}$ 75 150 $V_{CE}(sat)$ Collector-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ 0.3 0.3 $V_{BE(sat)}$ Base-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ 1.3 0.3 $V_{BE(on)}$ Base-Emitter On Voltage $V_{CE} = 10 \text{ V}, I_C = 150 \text{ mA}$ 1.2 0 SMALL SIGNAL CHARACTERISTICS C_{ob} Output Capacitance $V_{CB} = 10 \text{ V}, f = 1.0 \text{ MHz}$ 8.0 0						
(M)BCCollector-Base Breakdown VoltageIc = 10 μ A, IE = 060V(BR)CBOEmitter-Base Breakdown VoltageIE = 10 μ A, IE = 060CBOCollector Cutoff CurrentVCB = 40 V, IE = 050CBOEmitter Cutoff CurrentVCB = 40 V, IE = 050EBOEmitter Cutoff CurrentVCB = 3.0 V, IC = 050CON CHARACTERISTICS*VCE = 10 V, IC = 1.0 mA75DrFEDC Current GainVCE = 10 V, IC = 1.0 mA150VCE = 10 V, IC = 10 V, IC = 10 mA200600VCE(sat)Collector-Emitter Saturation VoltageIC = 150 mA, IB = 15 mA0.3VBE(sat)Base-Emitter Saturation VoltageIC = 150 mA, IB = 15 mA1.3VBE(on)Base-Emitter On VoltageVCE = 10 V, IC = 1.0 mA1.2SMALL SIGNAL CHARACTERISTICSVCB = 10 V, IC = 1.0 MHz8.0CobOutput CapacitanceVCB = 10 V, IC = 1.0 MHz8.0NeSmall-Signal Current GainIC = 20 mA, VCE = 10 V, IC = 10	OFF CHA	ARACTERISTICS				
$V_{(BR)EBO}$ Emitter-Base Breakdown Voltage $I_E = 10 \ \mu A, I_C = 0$ 5.0 CBO Collector Cutoff Current $V_{CB} = 40 \ V, I_E = 0$ 50 EBO Emitter Cutoff Current $V_{EB} = 3.0 \ V, I_C = 0$ 50ON CHARACTERISTICS*OPFEDC Current Gain $V_{CE} = 10 \ V, I_C = 1.0 \ mA$ 75 $V_{CE} = 10 \ V, I_C = 10 \ mA$ 75 $V_{CE} = 10 \ V, I_C = 10 \ mA$ 75 $V_{CE} = 10 \ V, I_C = 10 \ mA$ 75 $V_{CE} = 10 \ V, I_C = 10 \ mA$ 75 $V_{CE} = 10 \ V, I_C = 150 \ mA$ 0.0 $V_{CE(sat)}$ Collector-Emitter Saturation Voltage $I_C = 150 \ mA, I_B = 15 \ mA$ 0.3 $V_{BE(sat)}$ Base-Emitter Saturation Voltage $I_C = 150 \ mA, I_B = 15 \ mA$ 1.3 $V_{BE(on)}$ Base-Emitter On Voltage $V_{CE} = 10 \ V, I_C = 150 \ mA$ 1.2SMALL SIGNAL CHARACTERISTICSCobOutput Capacitance $V_{CB} = 10 \ V, f = 1.0 \ MHz$ 8.0 n_{fe} Small-Signal Current Gain $I_C = 20 \ mA, V_{CE} = 10 \ V, 2.5$	V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	30		V
CBOCollector Cutoff Current $V_{CB} = 40 \text{ V}, I_E = 0$ 50EBOEmitter Cutoff Current $V_{EB} = 3.0 \text{ V}, I_C = 0$ 50ON CHARACTERISTICS*DreDC Current Gain $V_{CE} = 10 \text{ V}, I_C = 1.0 \text{ mA}$ $V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA}$ $V_{CE} = 10 \text{ V}, I_C = 150 \text{ mA}$ 75 150 200 $V_{CE(sat)}$ Collector-Emitter Saturation VoltageI_C = 150 mA, I_B = 15 mA0.3 $V_{BE(sat)}$ Base-Emitter Saturation VoltageI_C = 150 mA, I_B = 15 mA1.3 $V_{BE(on)}$ Base-Emitter On VoltageV_{CE} = 10 V, I_C = 150 mA1.2SMALL SIGNAL CHARACTERISTICS C_{ob} Output Capacitance $V_{CB} = 10 \text{ V}, f = 1.0 \text{ MHz}$ 8.0 n_{fe} Small-Signal Current GainI_C = 20 mA, V_{CE} = 10 V, 2.58.0	V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$	60		V
EBOEmitter Cutoff Current $V_{EB} = 3.0 \text{ V}, \text{ I}_{C} = 0$ 50ON CHARACTERISTICS*DreadDC Current Gain $V_{CE} = 10 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA}$ 75 $V_{CE} = 10 \text{ V}, \text{ I}_{C} = 10 \text{ MA}$ 75150 $V_{CE}(sat)$ Collector-Emitter Saturation VoltageI_{C} = 150 mA200 $V_{BE(sat)}$ Base-Emitter Saturation VoltageI_{C} = 150 mA, I_{B} = 15 mA0.3 $V_{BE(on)}$ Base-Emitter On Voltage $V_{CE} = 10 \text{ V}, \text{ I}_{C} = 150 \text{ mA}$ 1.3SMALL SIGNAL CHARACTERISTICSCobOutput Capacitance $V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$ 8.0NreSmall-Signal Current Gain	V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu {\rm A}, \ I_{\rm C} = 0$	5.0		V
DN CHARACTERISTICS*DreDC Current Gain $V_{CE} = 10 \text{ V}, I_C = 1.0 \text{ mA}$ 75 $V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA}$ 150 $V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA}$ 200 $V_{CE}(sat)$ Collector-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $V_{BE(sat)}$ Base-Emitter Saturation Voltage $I_C = 150 \text{ mA}, I_B = 15 \text{ mA}$ $V_{BE(on)}$ Base-Emitter On Voltage $V_{CE} = 10 \text{ V}, I_C = 150 \text{ mA}$ SMALL SIGNAL CHARACTERISTICS C_{ob} Output Capacitance $V_{CB} = 10 \text{ V}, f = 1.0 \text{ MHz}$ 8.0 v_{fe} Small-Signal Current Gain $I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V}, 2.5$ 0	СВО	Collector Cutoff Current	$V_{CB} = 40 \text{ V}, \text{ I}_{E} = 0$		50	nA
hFEDC Current Gain $V_{CE} = 10 V, I_C = 1.0 mA$ $V_{CE} = 10 V, I_C = 10 mA$ $V_{CE} = 10 V, I_C = 10 mA$ $V_{CE} = 10 V, I_C = 10 mA$ $V_{CE} = 10 V, I_C = 150 mA$ 75 150 200 $W_{CE(sat)}$ Collector-Emitter Saturation Voltage $I_C = 150 mA, I_B = 15 mA$ 0.3 $V_{BE(sat)}$ Base-Emitter Saturation Voltage $I_C = 150 mA, I_B = 15 mA$ 1.3 $V_{BE(on)}$ Base-Emitter On Voltage $V_{CE} = 10 V, I_C = 150 mA$ 1.2SMALL SIGNAL CHARACTERISTICS C_{ob} Output Capacitance $V_{CB} = 10 V, f = 1.0 MHz$ 8.0 h_{fe} Small-Signal Current Gain $I_C = 20 mA, V_{CE} = 10 V, 2.5$ 2.5	EBO	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
Base-Emitter On Voltage V _{CE} = 10 V, I _C = 150 mA 1.2 SMALL SIGNAL CHARACTERISTICS 0 0 0 1.2 Small-Signal Current Gain I _C = 20 mA, V _{CE} = 10 V, f = 1.0 MHz 8.0 0	V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 150 \text{ mA}, I_{\rm B} = 15 \text{ mA}$		0.3	V
V _{CE} = 10 V, I _C = 150 mA200600V _{CE(sat)} Collector-Emitter Saturation VoltageI _C = 150 mA, I _B = 15 mA0.3V _{BE(sat)} Base-Emitter Saturation VoltageI _C = 150 mA, I _B = 15 mA1.3V _{BE(on)} Base-Emitter On VoltageV _{CE} = 10 V, I _C = 150 mA1.2SMALL SIGNAL CHARACTERISTICSCobOutput CapacitanceV _{CB} = 10 V, f = 1.0 MHz8.0hreeSmall-Signal Current GainI _C = 20 mA, V _{CE} = 10 V, 2.5	N _{FE}	DC Current Gain		-		
Octobe Display the sector of the sector	,	Collector Emitter Seturation Voltage	$V_{CE} = 10 \text{ V}, \text{ I}_{C} = 150 \text{ mA}$	200		V
Base-Emitter On Voltage V _{CE} = 10 V, I _C = 150 mA 1.2 SMALL SIGNAL CHARACTERISTICS 0 0 0 1.2 Small-Signal Current Gain I _C = 20 mA, V _{CE} = 10 V, f = 1.0 MHz 8.0 0	- ()	°				
SMALL SIGNAL CHARACTERISTICS Cob Output Capacitance V _{CB} = 10 V, f = 1.0 MHz 8.0 Nre Small-Signal Current Gain I _C = 20 mA, V _{CE} = 10 V, 2.5		9	0 , 5		-	V
C_{ob} Output Capacitance $V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$ 8.0 N_{fe} Small-Signal Current Gain $I_C = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ 2.5	/ _{BE(on)}	Base-Emitter On Voltage	$v_{CE} = 10 v, I_C = 150 mA$		1.2	V
		Output Capacitance			8.0	pF
	Դfe	, , , , , , , , , , , , , , , , , , ,	$I_{c} = 20 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	2.5		
$V_{cc} = 30 \text{ V}, I_c = 150 \text{ mA},$ 40	on	Turn-On Time	$V_{CC} = 30 \text{ V}, \text{ I}_{C} = 150 \text{ mA},$		40	ns
$I_{B1} = I_{B2} = 15 \text{ mA}$ 400	off	Turn-Off Time	$I_{B1} = I_{B2} = 15 \text{ mA}$		400	ns

This device is designed for low level, high gain, low noise general purpose amplifier applications at collector currents to 50 mA. Sourced from Process 62.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	50	V
V _{CBO}	Collector-Base Voltage	50	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

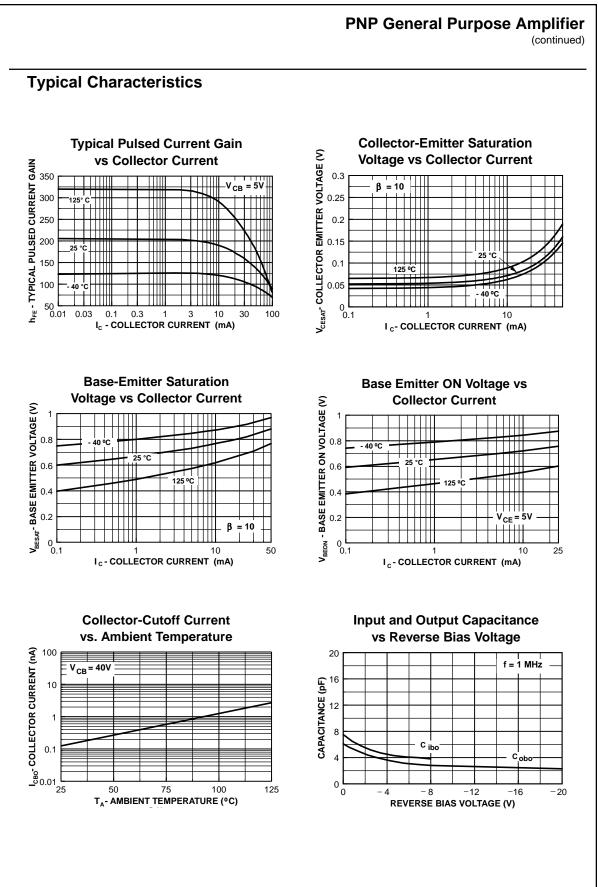
NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

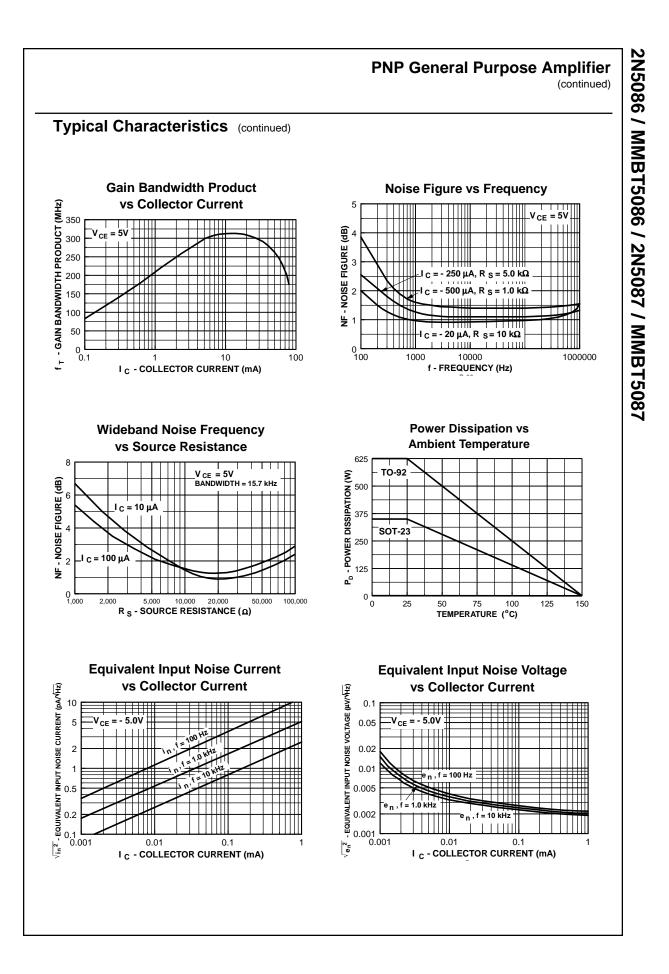
Thermal Characteristics TA= 25°C unless otherwise noted

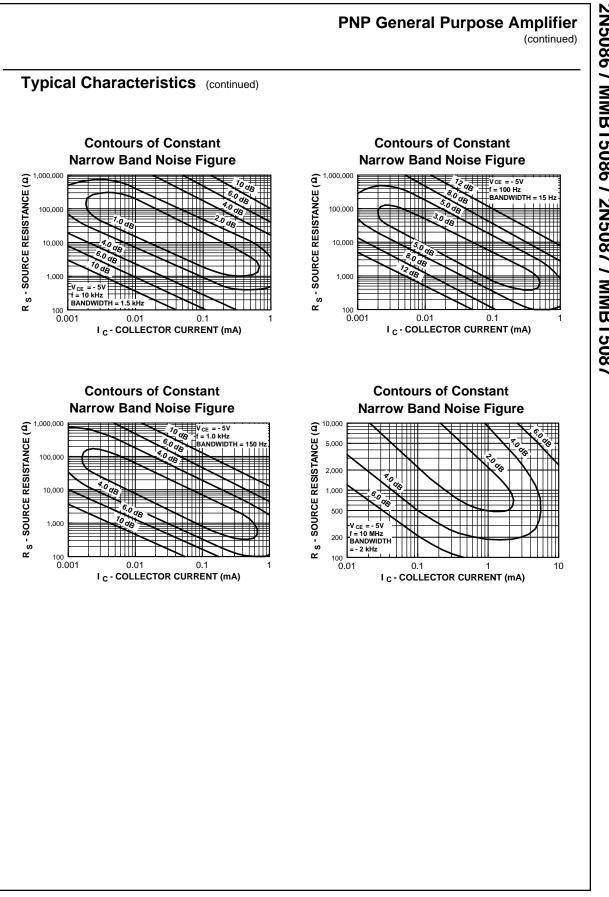
Symbol	Characteristic	м	ax	Units
		2N5086 2N5086	*MMBT5086 *MMBT5087	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."


				1	1
Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	50		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	50		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 10 \text{ V}, I_E = 0$ $V_{CB} = 35 \text{ V}, I_E = 0$		10 50	nA nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
		VEB = 0.0 V, IC = 0		30	ПА
ON CHAR	ACTERISTICS DC Current Gain	I _C = 100 μA, V _{CE} = 5.0 V 2N5086 2N5087	150 250 150	500 800	
ON CHAR	ACTERISTICS	I _c = 100 μA, V _{CE} = 5.0 V 2N5086		500	
	ACTERISTICS	$I_{C} = 100 \ \mu\text{A}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{2N5087} \\ I_{C} = 1.0 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{2N5087} \\ I_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{2N5087} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{2N5087} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{2N5086} \\ \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 10 \ \text{mA}, \ V_{CE} = 5.0 \ V \qquad \textbf{I}_{C} = 10 \ \text{mA}, \ V_{CE} = 10 \$	250 150 250 150	500	V

-					
C _{cb}	Collector-Base Capacitance	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 100 \text{ kHz}$		4.0	pF
h _{fe}	Small-Signal Current Gain	$I_{C} = 1.0 \text{ mA}, V_{CE} = 5.0,$ 2N5086 f = 1.0 kHz 2N5087	150 250	600 900	
NF	Noise Figure	$ I_{C} = 100 \ \mu\text{A}, \ V_{CE} = 5.0 \ V, \mbox{2N5086} \\ R_{S} = 3.0 \ k\Omega, \ f = 1.0 \ kHz \mbox{2N5087} $		3.0 2.0	dB dB
		$ I_C = 20 \ \mu A, \ V_{CE} = 5.0 \ V, \qquad \mbox{2N5086} \\ R_S = 10 \ k\Omega, \qquad \mbox{2N5087} \\ f = 10 \ Hz \ to \ 15.7 \ kHz $		3.0 2.0	dB dB


*Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2.0%


Spice Model

PNP (ls=6.734f Xti=3 Eg=1.11 Vaf=45.7 Bf=254.1 Ne=1.741 lse=6.734f lkf=.1962 Xtb=1.5 Br=2.683 Nc=2 lsc=0 lkr=0 Rc=1.67 Cjc=6.2p Mjc=.301 Vjc=.75 Fc=.5 Cje=7.5p Mje=.2861 Vje=.75 Tr=10.1n Tf=467.8p ltf=.17 Vtf=5 Xtf=8 Rb=10)

2N5086 / MMBT5086 / 2N5087 / MMBT5087

2N5086 / MMBT5086 / 2N5087 / MMBT5087

TRADEMARKS

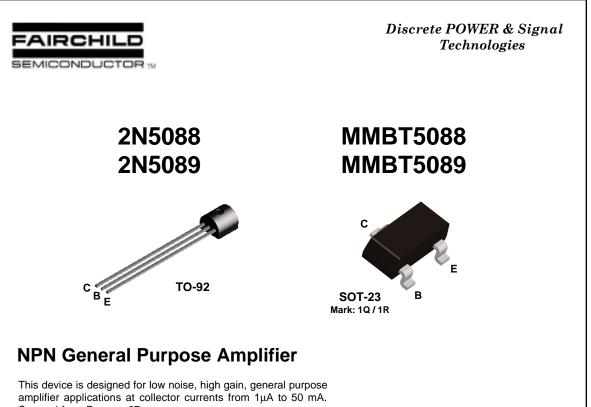
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY


FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Sourced from Process 07.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter		Value	Units
V _{CEO}	Collector-Emitter Voltage	2N5088 2N5089	30 25	V V
V _{CBO}	Collector-Base Voltage	2N5088 2N5089	35 30	V V
V _{EBO}	Emitter-Base Voltage		4.5	V
l _c	Collector Current - Continuous		100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range		-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

These ratings are based on a maximum junction temperature of 150 degrees C.
 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

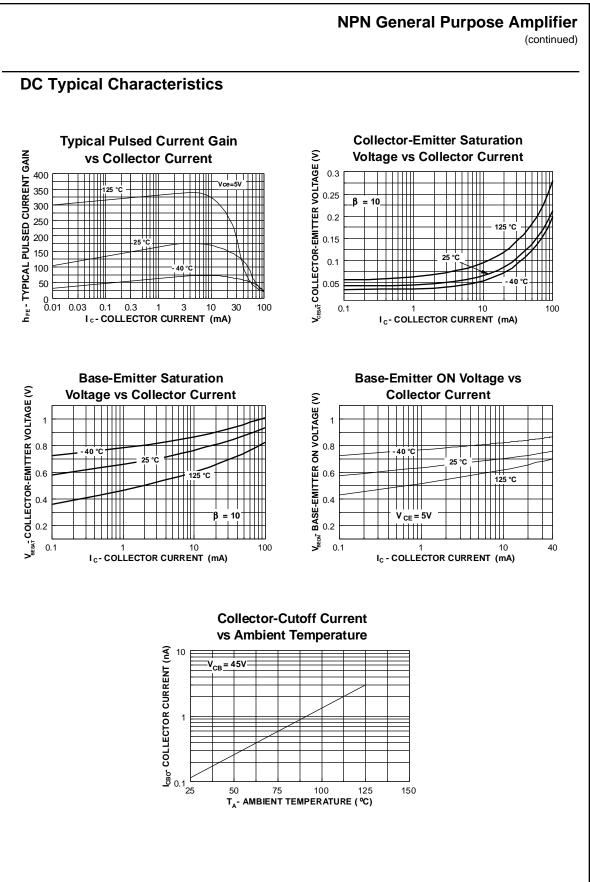
Symbol	Characteristic	Max		Units	
		2N5088 2N5089	*MMBT5088 *MMBT5089		
P _D	Total Device Dissipation	625	350	mW	
	Derate above 25°C	5.0	2.8	mW/°C	
R _{θJC}	Thermal Resistance, Junction to Case	83.3		°C/W	
$R_{\theta_{JA}}$	Thermal Resistance, Junction to Ambient	200	357	°C/W	

Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06.

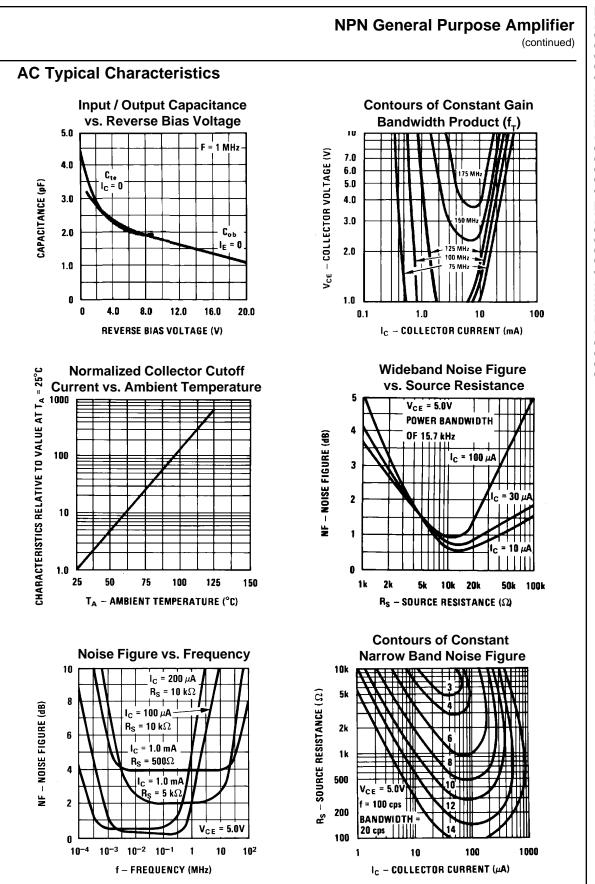
NPN General Purpose Amplifier

(continued)

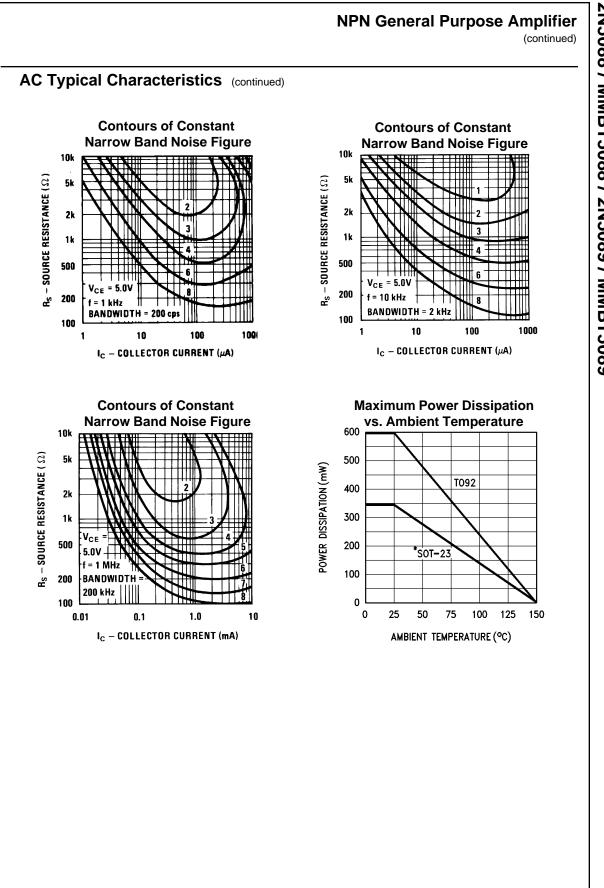
Electrical Characteristics TA = 25°C unless otherwise noted							
Symbol	Parameter	Test Conditio	ons	Min	Max	Units	
OFF CHA	RACTERISTICS						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	2N5088 2N5089	30 25		V V	
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 100 \ \mu A, I_{E} = 0$	2N5088 2N5089	35 30		V V	
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, \text{ I}_{E} = 0$ $V_{CB} = 15 \text{ V}, \text{ I}_{E} = 0$	2N5088 2N5089		50 50	nA nA	
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$ $V_{EB} = 4.5 \text{ V}, I_{C} = 0$			50 100	nA nA	
ON CHAR	ACTERISTICS						
h _{FE}	DC Current Gain	$I_{C} = 100 \ \mu\text{A}, V_{CE} = 5.0 \ \text{V}$ $I_{C} = 1.0 \ \text{mA}, V_{CE} = 5.0 \ \text{V}$	2N5088 2N5089 2N5088	300 400 350	900 1200		
		$I_{\rm C} = 10$ mA, $V_{\rm CE} = 5.0$ V*	2N5089 2N5088 2N5089	450 300 400			
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$			0.5	V	
		$I_{\rm C} = 10 \text{ mA}, V_{\rm CE} = 5.0 \text{ V}$			0.8	V	

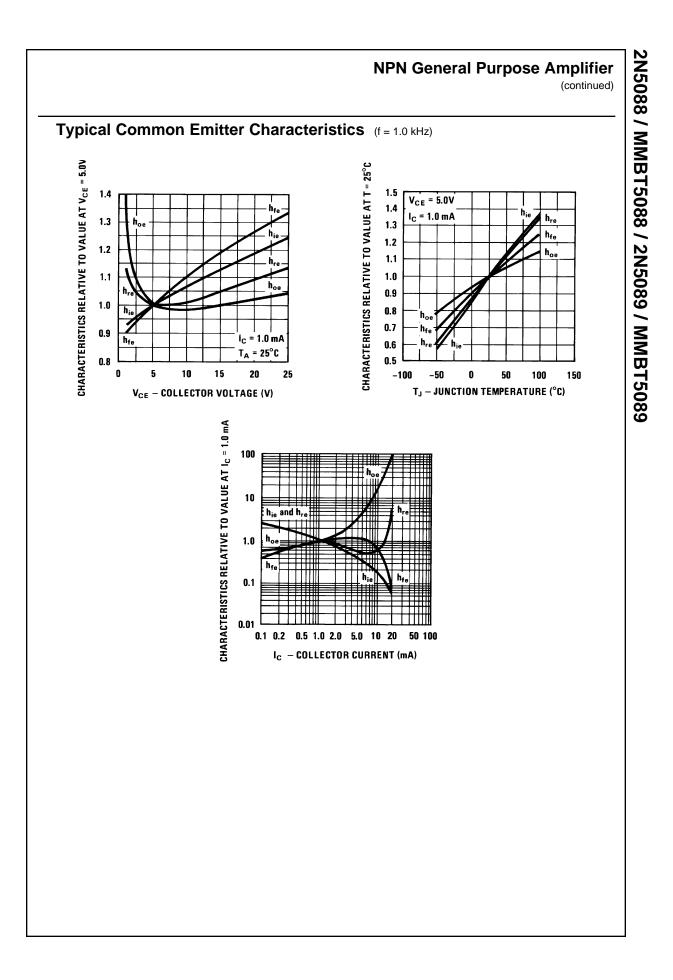

SMALL SIGNAL CHARACTERISTICS

f _T	Current Gain - Bandwidth Product	$I_{C} = 500 \ \mu A, V_{CE} = 5.0 \ mA,$ f = 20 MHz	50		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 100 \text{ kHz}$		4.0	pF
Ceb	Emitter-Base Capacitance	$V_{BE} = 0.5 \text{ V}, I_{C} = 0, f = 100 \text{ kHz}$		10	pF
h _{fe}	Small-Signal Current Gain	$ I_{C} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, \mbox{2N5088} \\ f = 1.0 \text{ kHz} \qquad \mbox{2N5089} $	350 450	1400 1800	
NF	Noise Figure	$ \begin{array}{l} I_{C} = 100 \; \mu A, V_{CE} = 5.0 \; V, \mbox{2N5088} \\ R_{S} = 10 \; k\Omega, \mbox{2N5089} \\ f = 10 \; Hz \; to \; 15.7 \; kHz \end{array} $		3.0 2.0	dB dB


*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

Spice Model


NPN (Is=5.911f Xti=3 Eg=1.11 Vaf=62.37 Bf=1.122K Ne=1.394 Ise=5.911f Ikf=14.92m Xtb=1.5 Br=1.271 Nc=2 lsc=0 lkr=0 Rc=1.61 Cjc=4.017p Mjc=.3174 Vjc=.75 Fc=.5 Cje=4.973p Mje=.4146 Vje=.75 Tr=4.673n Tf=821.7p Itf=.35 Vtf=4 Xtf=7 Rb=10)


2N5088 / MMBT5088 / 2N5089 / MMBT5089

2N5088 / MMBT5088 / 2N5089 / MMBT5089

2N5172

2N5172

NPN General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring collector currents to 300 mA. Sourced from Process 10. See PN100 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	25	V
V _{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	500	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Character

ristics	TA 0500 1 41 1 4 1
131163	TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		2N5172	
P _D	Total Device Dissipation	625	mW
	Derate above 25°C	5.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

ued)

OFF CHARACTERISTICS

V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	25		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$	25		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, \ I_{C} = 0$	5.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 25 \text{ V}, I_E = 0$		100	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 5.0 \text{ V}, \text{ I}_{C} = 0$		100	nA

ON CHARACTERISTICS*

h _{FE}	DC Current Gain	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$	100	500	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.25	V
V _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$	0.5	1.2	V

SMALL SIGNAL CHARACTERISTICS

C _{cb}	Collector- Base Capacitance	V _{CB} = 10 V, f = 1.0 MHz	1.6	10	pF
h _{fe}	Small-Signal Current Gain	$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 1.0 kHz	100	750	

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Discrete POWER & Signal **Technologies**

2N5210

2N5210

AIRCHI

SEMICONDUCTOR 11

NPN General Purpose Amplifier

This device is designed for low noise, high gain, general purpose amplifier applications at collector currents from 1µA to 50 mA. Sourced from Process 07. See 2N5088 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	50	V
V _{CBO}	Collector-Base Voltage	50	V
V _{EBO}	Emitter-Base Voltage	4.5	V
I _C	Collector Current - Continuous	100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units
		2N5210	-
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
R _{θJC}	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	50		V
/ _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 0.1 \text{ mA}, I_{\rm E} = 0$	50		V
СВО	Collector Cutoff Current	$V_{CB} = 35 \text{ V}, I_E = 0$		50	nA
EBO	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, \text{ I}_{C} = 0$		50	nA
ON CHAR ^ì fe	ACTERISTICS DC Current Gain	$\begin{split} I_{C} &= 100 \; \mu A, V_{CE} = 5.0 \; V \\ I_{C} &= 1.0 \; m A, V_{CE} = 5.0 \; V \\ I_{C} &= 10 \; m A, V_{CE} = 5.0 \; V^{*} \end{split}$	200 250 250	600	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10$ mA, $I_{\rm B} = 1.0$ mA		0.7	V
/ _{BE(on)}	Base-Emitter On Voltage	$I_{C} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$		0.85	V
T	GNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_{\rm C} = 500 \mu \text{A}, V_{\rm CE} = 5.0 \text{V},$ f = 20 MHz	30		MHz
C _{cb}	Collector-Base Capacitance	$V_{CB} = 5.0 \text{ V}, I_E = 0, f = 100 \text{ kHz}$		4.0	pF
lfe	Small-Signal Current Gain	$I_{c} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 1.0 kHz	250	900	
NF	Noise Figure	$ \begin{array}{l} I_{C} = 20 \; \mu A, V_{CE} = 5.0 \; V, \\ R_{S} = 22 \; k\Omega, f = 10 \; Hz \; to \; 15.7 \; kHz \\ I_{C} = 20 \; \mu A, V_{CE} = 5.0 \; V, \\ R_{S} = 10 \; k\Omega, \; f = 1.0 \; kHz \end{array} $		2.0 3.0	dB dB

2N5210

Discrete POWER & Signal **Technologies**

2N5306

2N5306

FAIRCHILD

SEMICONDUCTOR TM

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at currents to 1.0 A. Sourced from Process 05. See MPSA14 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	25	V
V_{EBO}	Emitter-Base Voltage	12	V
I _C	Collector Current - Continuous	1.2	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Thermal Characteristics TA = 25°C unless otherwise noted			
Symbol	Characteristic	Мах	Units
		2N5306	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

© 1997 Fairchild Semiconductor Corporation

NPN Darlington Trar (0

		Test Conditions	Min	Max	Units
OFF CHAR	RACTERISTICS				
/ _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	25		V
/ _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 0.1 \ \mu {\rm A}, \ I_{\rm E} = 0$	25		V
/ _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 0.1 \mu A, I_{C} = 0$	12		V
СВО	Collector Cutoff Current	$V_{CB} = 25 \text{ V}, \text{ I}_{E} = 0$		0.1	μA
		$V_{CB} = 25 \text{ V}, I_E = 0, T_A = 100 \text{ °C}$ $V_{EB} = 12 \text{ V}, I_C = 0$		20	μA
EBO	Emitter Cutoff Current	$V_{EB} = 12 V, I_{C} = 0$		0.1	μA
	ACTERISTICS*				
	DC Current Gain		7 000	70.000	r
η _{FE}	De current Gam	$V_{CE} = 5.0 \text{ V}, I_C = 2.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_C = 100 \text{ mA}$	7,000 20,000	70,000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 200 \text{ mA}, I_{\rm B} = 0.2 \text{ mA}$,	1.4	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 200 \text{ mA}, I_{\rm B} = 0.2 \text{ mA}$		1.6	V
V _{BE(on)}	Base-Emitter On Voltage	$I_{\rm C}$ = 200 mA, $V_{\rm CE}$ = 5.0 V		1.5	V
			-		
SMALL SIG	GNAL CHARACTERISTICS				
C _{cb}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		10	pF
λfe	Small-Signal Current Gain	$I_{\rm C} = 2.0 \text{ mA}, V_{\rm CE} = 5.0 \text{ V},$			
		f = 1.0 kHz I _c =2.0 mA, V _{CE} = 5.0 V,	7,000		
		f = 10 MHz	6.0		
*Dulas Testi F	Pulse Width ≤ 300 u.s. Duty Cvcle ≤ 2.0%				
Fuise Test. F	Fulse width \leq 500 µs, Duty Cycle \leq 2.0%				

Discrete POWER & Signal **Technologies**

2N5307

2N5307

FAIRCHILD

SEMICONDUCTOR TM

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at currents to 1.0 A. Sourced from Process 05. See MPSA14 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	12	V
I _C	Collector Current - Continuous	1.2	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Thermal Characteristics TA = 25°C unless otherwise noted			
Symbol	Characteristic	Max	Units
		2N5307	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

© 1997 Fairchild Semiconductor Corporation

NPN Darlingt

on	Transistor
	(continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 0.1 \ \mu {\rm A}, \ I_{\rm E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 0.1 \mu {\rm A}, I_{\rm C} = 0$	12		V
I _{CBO}	Collector Cutoff Current	V _{CB} = 40 V, I _E = 0 V _{CB} = 40 V, I _E = 0, T _A = 100 °C		0.1 20	μΑ μΑ
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 12 \text{ V}, \text{ I}_{C} = 0$		0.1	μΑ

h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 2.0 \text{ mA}$	2,000	20,000	
		$V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA}$	6,000		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 200 \text{ mA}, I_{\rm B} = 0.2 \text{ mA}$		1.4	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 200 \text{ mA}, I_{\rm B} = 0.2 \text{ mA}$		1.6	V
V _{BE(on)}	Base-Emitter On Voltage	$I_{\rm C}$ = 200 mA, $V_{\rm CE}$ = 5.0 V		1.5	V

SMALL SIGNAL CHARACTERISTICS

C _{cb}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		10	pF
h _{fe}	Small-Signal Current Gain	$I_{c} = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 1.0 kHz $I_{c} = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 10 MHz	2,000		

*Pulse Test: Pulse Width $\leq 300~\mu\text{s},$ Duty Cycle $\leq 2.0\%$

2N5307

Discrete POWER & Signal **Technologies**

2N5308

2N5308

FAIRCHILD

SEMICONDUCTOR TM

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at currents to 1.0 A. Sourced from Process 05. See MPSA14 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	12	V
I _C	Collector Current - Continuous	1.2	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Therm	al Characteristics TA = 25°C unless otherwi	se noted	
Symbol	Characteristic	Max	Units
		2N5308	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

© 1997 Fairchild Semiconductor Corporation

NPN Darlington Transistor (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
		•			
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 0.1 \ \mu {\rm A}, I_{\rm E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 0.1 \mu A, I_{C} = 0$	12		V
СВО	Collector Cutoff Current	$V_{CB} = 40 \text{ V}, \text{ I}_{E} = 0$		0.1	μΑ
		$V_{CB} = 40 \text{ V}, \text{ I}_{E} = 0, \text{ T}_{A} = 100 ^{\circ}\text{C}$		20	μA
EBO	Emitter Cutoff Current	$V_{EB} = 12 \text{ V}, \text{ I}_{C} = 0$		0.1	μΑ
ON CHAF	ACTERISTICS*		<u>. </u>		
	RACTERISTICS*	$V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 2.0 \text{ mA}$	7,000	70,000	
h _{FE}		$V_{CE} = 5.0 \text{ V}, I_C = 2.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_C = 100 \text{ mA}$ $I_C = 200 \text{ mA}, I_B = 0.2 \text{ mA}$	7,000 20,000	70,000	V
h _{FE} V _{CE(sat)}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA}$			V V
h_{FE} $V_{CE(sat)}$ $V_{BE(sat)}$	DC Current Gain Collector-Emitter Saturation Voltage	$V_{CE} = 5.0 \text{ V}, I_C = 100 \text{ mA}$ $I_C = 200 \text{ mA}, I_B = 0.2 \text{ mA}$		1.4	•
$\begin{array}{l} h_{FE} \\ \hline V_{CE(sat)} \\ \hline V_{BE(sat)} \\ \hline V_{BE(on)} \end{array}$	DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage Base-Emitter On Voltage	$\label{eq:V_CE} \begin{array}{l} V_{CE} = 5.0 \ V, \ I_C = 100 \ mA \\ \\ I_C = 200 \ mA, \ I_B = 0.2 \ mA \\ \\ \\ I_C = 200 \ mA, \ I_B = 0.2 \ mA \end{array}$		1.4 1.6	V
$\begin{array}{l} h_{FE} \\ V_{CE(sat)} \\ V_{BE(sat)} \\ V_{BE(on)} \end{array}$	DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage Base-Emitter On Voltage GNAL CHARACTERISTICS	$V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA}$ $I_{C} = 200 \text{ mA}, I_{B} = 0.2 \text{ mA}$ $I_{C} = 200 \text{ mA}, I_{B} = 0.2 \text{ mA}$ $I_{C} = 200 \text{ mA}, V_{CE} = 5.0 \text{ V}$		1.4 1.6	V
$\begin{array}{l} h_{FE} \\ \hline V_{CE(sat)} \\ \hline V_{BE(sat)} \\ \hline V_{BE(on)} \end{array}$	DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage Base-Emitter On Voltage	$\label{eq:V_CE} \begin{array}{l} V_{CE} = 5.0 \ V, \ I_C = 100 \ mA \\ \\ I_C = 200 \ mA, \ I_B = 0.2 \ mA \\ \\ \\ I_C = 200 \ mA, \ I_B = 0.2 \ mA \end{array}$		1.4 1.6 1.5	VV

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

2N5400

2N5400

PNP General Purpose Amplifier

This device is designed for use as general purpose amplifiers and switches requiring high voltages. Sourced from Process 74. See 2N5401 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	120	V
V _{CBO}	Collector-Base Voltage	130	V
V_{EBO}	Emitter-Base Voltage	5.0	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Therm	al Characteristics TA = 25°C unless otherwis	e noted	
Symbol	Characteristic	Max	Units
		2N5400	
P _D	Total Device Dissipation Derate above 25℃	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

© 1997 Fairchild Semiconductor Corporation

PNP General Purpose Amplifier

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	120		V
/ _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, I_{\rm E} = 0$	130		V
/ _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu {\rm A}, \ I_{\rm C} = 0$	5.0		V
	Collector Cutoff Current	$V_{CB} = 100 \text{ V}, I_E = 0$ $V_{CB} = 100 \text{ V}, I_E = 0, T_A = 100 ^{\circ}\text{C}$		100 100	nA μA
BO	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
I _{сво} I _{ЕВО} ON CHAF		$V_{CB} = 100 \text{ V}, I_E = 0, T_A = 100 ^{\circ}\text{C}$		100	
h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}$	30 40 40	180	
	Colloctor Emitter Coturation Valtors	$I_{c} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$		0.2	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA		0.5	V

SMALL SIGNAL CHARACTERISTICS

C _{ob}	Output Capacitance	$V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		6.0	pF
f _T	Current Gain - Bandwidth Product	$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	100	400	
h _{fe}	Small-Signal Current Gain	$I_{c} = 1.0 \text{ mA}, V_{ce} = 10 \text{ V},$ f = 1.0 kHz	30	200	
NF	Noise Figure	$V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 250 \mu\text{A},$ $R_{S} = 1.0 k\Omega,$ f = 10 Hz to 15.7 kHz		8.0	V

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

2N5400

Discrete POWER & Signal **Technologies**

2N5401

MMBT5401

PNP General Purpose Amplifier

This device is designed as a general purpose amplifier and switch for applications requiring high voltages. Sourced from Process 74.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol Parameter Value Units 150 V V_{CEO} Collector-Emitter Voltage Collector-Base Voltage 160 V V_{сво} V_{EBO} Emitter-Base Voltage 5.0 V Collector Current - Continuous 200 mΑ $I_{\rm C}$ -55 to +150 Operating and Storage Junction Temperature Range °C T_J, T_{stq}

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

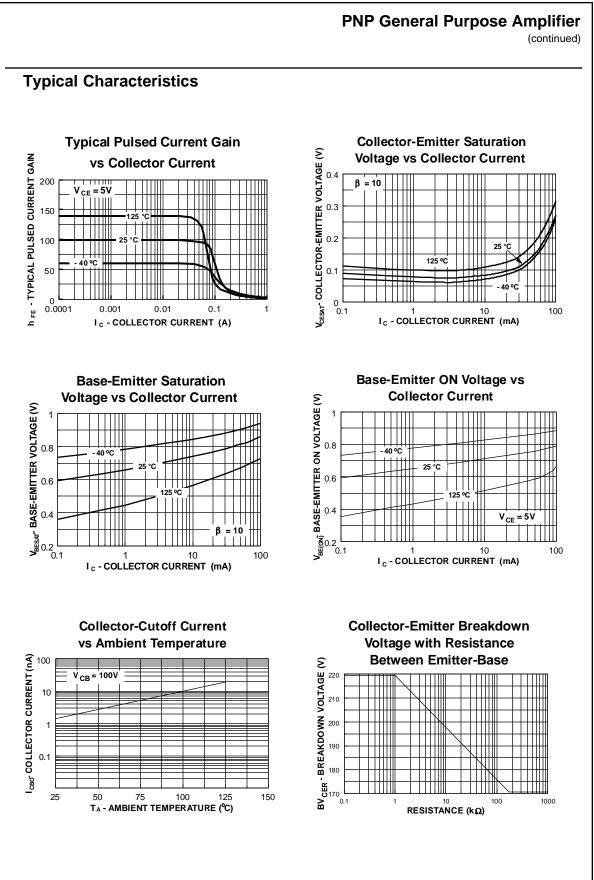
Symbol	Characteristic	Мах		Units
		2N5401	*MMBT5401	
P _D	Total Device Dissipation	625	350	mW
	Derate above 25°C	5.0	2.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

TA = 25°C unless otherwise noted

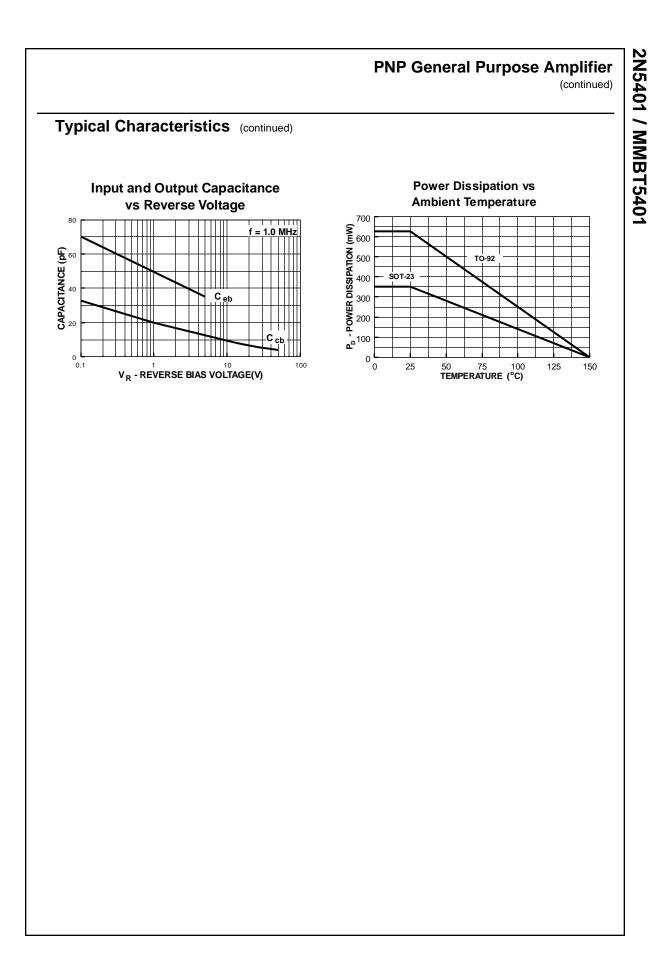
*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

© 1997 Fairchild Semiconductor Corporation

PNP General Purpose Amplifier


(continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
0 011					
	ARACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	150		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	160		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, I_{C} = 0$	5.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 120 \text{ V}, \text{ I}_{\text{E}} = 0$		50	nA
		$V_{CB} = 120 \text{ V}, I_E = 0, T_A = 100^{\circ}\text{C}$		50	μA
I EBO	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_C = 0$		50	nA
ON CHAI	RACTERISTICS*	I _C = 1.0 mA, V _{CE} = 5.0 V	50		
		$I_{c} = 1.0 \text{ mA}$, $V_{cc} = 5.0 \text{ V}$	50		1
		$I_{c} = 10 \text{ mA}, V_{cE} = 5.0 \text{ V}$	60	240	
h _{FE}	DC Current Gain	$I_{c} = 10 \text{ mA}, V_{ce} = 5.0 \text{ V}$ $I_{c} = 50 \text{ mA}, V_{ce} = 5.0 \text{ V}$			
h _{FE}		$I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_{C} = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$	60	0.2	V
h _{FE} V _{CE(sat)}	DC Current Gain Collector-Emitter Saturation Voltage	$ \begin{array}{l} I_{C} = 10 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 50 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 10 \text{ mA}, \ I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, \ I_{B} = 5.0 \text{ mA} \end{array} $	60	0.2	v
h _{FE} V _{CE(sat)}	DC Current Gain	$ \begin{array}{l} I_{C} = 10 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 50 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 10 \text{ mA}, \ I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, \ I_{B} = 5.0 \text{ mA} \\ I_{C} = 10 \text{ mA}, \ I_{B} = 1.0 \text{ mA} \end{array} $	60	0.2	
h _{FE} V _{CE(sat)}	DC Current Gain Collector-Emitter Saturation Voltage	$ \begin{array}{l} I_{C} = 10 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 50 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 10 \text{ mA}, \ I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, \ I_{B} = 5.0 \text{ mA} \end{array} $	60	0.2 0.5 1.0	V V
h _{FE} V _{CE(sat)} V _{BE(sat)}	DC Current Gain Collector-Emitter Saturation Voltage	$ \begin{array}{l} I_{C} = 10 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 50 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 10 \text{ mA}, \ I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, \ I_{B} = 5.0 \text{ mA} \\ I_{C} = 10 \text{ mA}, \ I_{B} = 1.0 \text{ mA} \end{array} $	60	0.2 0.5 1.0	V V
h _{FE} V _{CE(sat)} V _{BE(sat)} SMALL S	DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	$ \begin{array}{l} I_{C} = 10 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 50 \text{ mA}, \ V_{CE} = 5.0 \ V \\ I_{C} = 10 \text{ mA}, \ I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, \ I_{B} = 5.0 \text{ mA} \\ I_{C} = 10 \text{ mA}, \ I_{B} = 1.0 \text{ mA} \end{array} $	60	0.2 0.5 1.0	V V
h _{FE} V _{CE(sat)} V _{BE(sat)}	DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	$\begin{split} I_{C} &= 10 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_{C} &= 50 \text{ mA}, V_{CE} = 5.0 \text{ V} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ I_{C} &= 10 \text{ mA}, I_{B} = 1.0 \text{ mA} \\ I_{C} &= 50 \text{ mA}, I_{B} = 5.0 \text{ mA} \\ \end{split}$	60 50	0.2 0.5 1.0 1.0	V V V


*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

Spice Model

PNP (ls=21.48f Xti=3 Eg=1.11 Vaf=100 Bf=132.1 Ne=1.375 lse=21.48f lkf=.1848 Xtb=1.5 Br=3.661 Nc=2 lsc=0 lkr=0 Rc=1.6 Cjc=17.63p Mjc=.5312 Vjc=.75 Fc=.5 Cje=73.39p Mje=.3777 Vje=.75 Tr=1.476n Tf=641.9p ltf=0 Vtf=0 Xtf=0 Rb=10)

2N5401 / MMBT5401

N-Channel General Purpose Amplifier

This device is a low level audio amplifier and switching transistors, and can be used for analog switching applications. Sourced from Process 55.

Absolute Maximum Ratings* TA = 25°C u	nless otherwise noted
---------------------------------------	-----------------------

Symbol	Parameter	Value	Units
V _{DG}	Drain-Gate Voltage	25	V
V_{GS}	Gate-Source Voltage	- 25	V
I_{GF}	Forward Gate Current	10	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

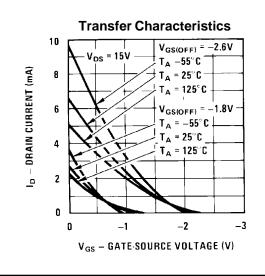
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

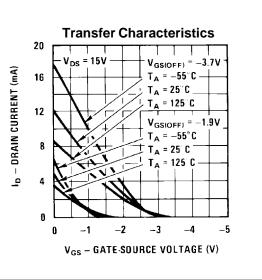
Thermal Characteristics TA = 25°C unless otherwise noted

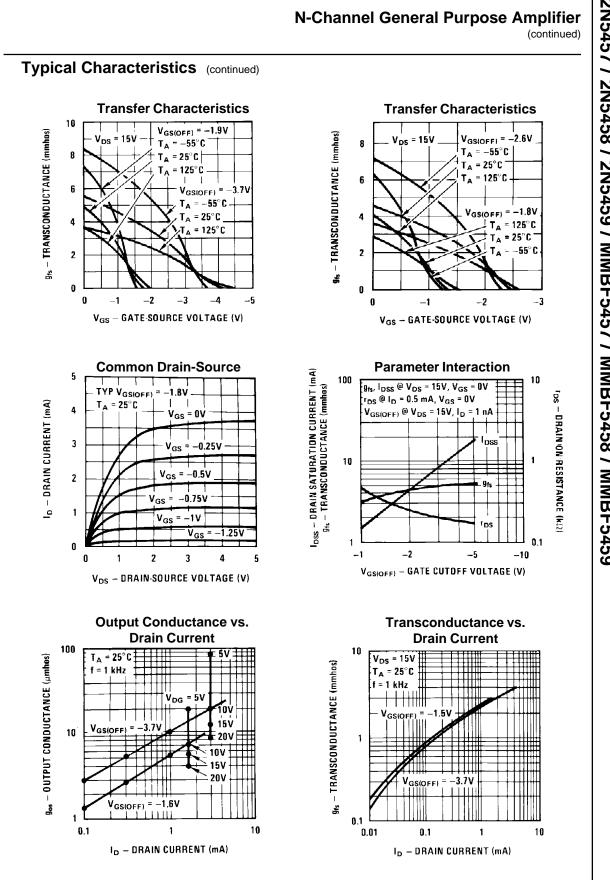
Symbol	Characteristic	Мах		Units
		2N5457	*MMBF5457	
P _D	Total Device Dissipation	625	350	mW
	Derate above 25°C	5.0	2.8	mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

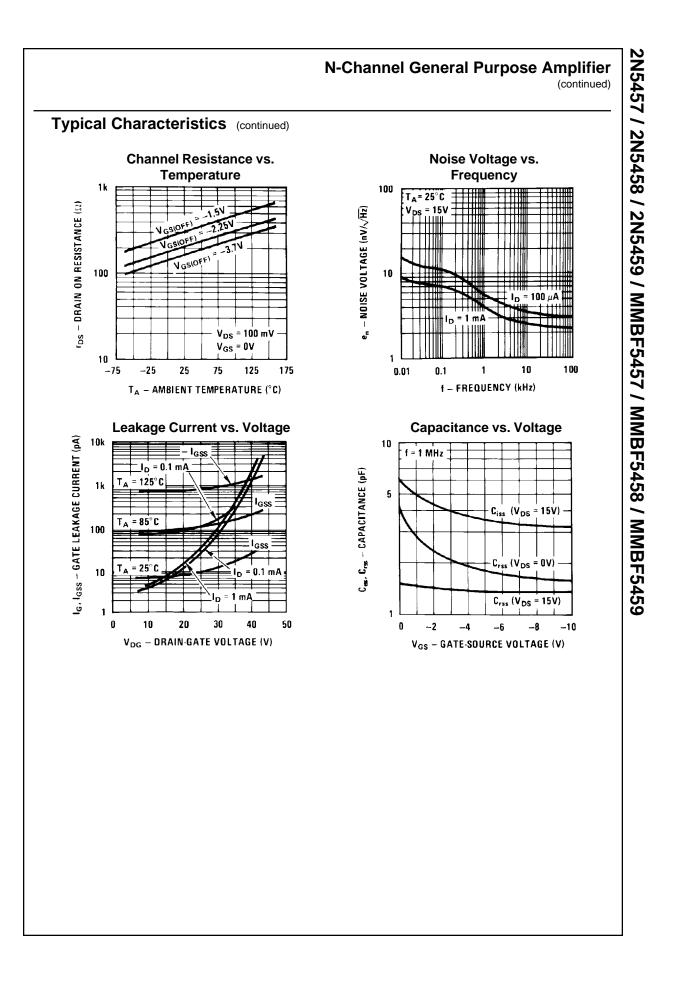
ã 1997 Fairchild Semiconductor Corporation


N-Channel General Purpose Amplifier 10


			ns	Min	Тур	Max	Units
OFF CHA	RACTERISTICS						
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = 10 \ \mu A, V_{DS} = 0$		- 25			V
I _{GSS}	Gate Reverse Current	$V_{GS} = -15 V, V_{DS} = 0$				- 1.0	nA
		$V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A =$	= 100°C			- 200	nA
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, I_D = 10 \text{ nA}$	2N5457	- 0.5		- 6.0	V
	_		2N5458	- 1.0		- 7.0	V
			2N5459	- 2.0		- 8.0	V
V _{GS}	Gate-Source Voltage	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 100 \ \mu\text{A}$	2N5457		- 2.5		V
		$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 200 \ \mu\text{A}$	2N5458		- 3.5		V
		$V_{DS} = 15 \text{ V}, I_D = 400 \ \mu\text{A}$	2N5459		- 4.5		V
ON CHAR	ACTERISTICS						
I _{DSS}	Zero-Gate Voltage Drain Current*	$V_{DS} = 15 \text{ V}, V_{GS} = 0$	2N5457	1.0	3.0	5.0	mA
			2N5458	2.0	6.0	9.0	mA
			2N5459	4.0	9.0	16	mA


		2110407	1000		3000	μππος
		2N5458	1500		5500	μmhos
		2N5459	2000		6000	μmhos
g _{os}	Output Conductance*	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}$		10	50	μmhos
Ciss	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		4.5	7.0	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$		1.5	3.0	pF
NF	Noise Figure	$V_{DS} = 15 V, V_{GS} = 0, f = 1.0 kHz, R_G = 1.0 megohm, BW = 1.0 Hz$			3.0	dB
		$R_G = 1.0$ megonin, BW = 1.0 Hz		l		

*Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2%


Typical Characteristics

2N5457 / 2N5458 / 2N5459 / MMBF5457 / MMBF5458 / MMBF5459

P-Channel General Purpose Amplifier

This device is designed primarily for low level audio and general purpose applications with high impedance signal sources. Sourced from Process 89.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DG}	Drain-Gate Voltage	- 40	V
V _{GS}	Gate-Source Voltage	40	V
I _{GF}	Forward Gate Current	10	mA
T _J ,T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

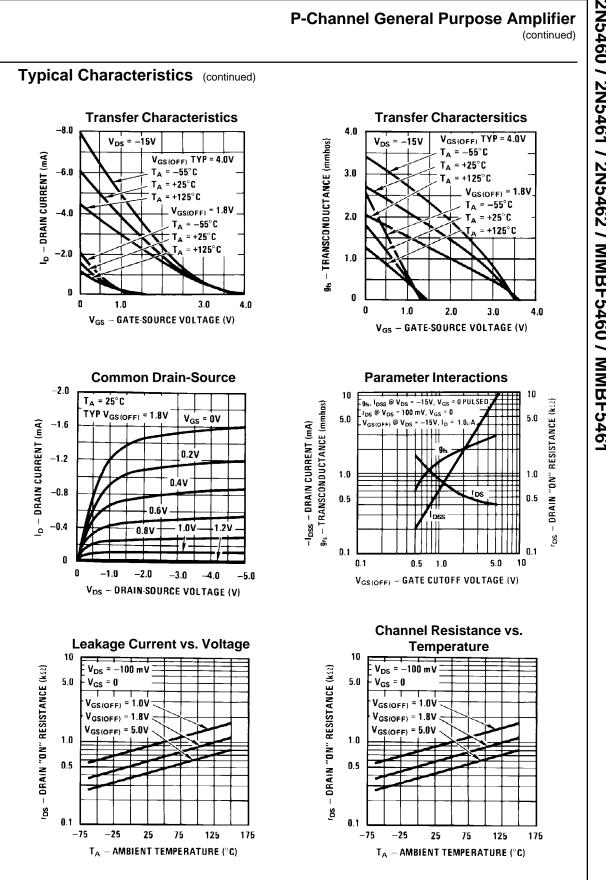
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

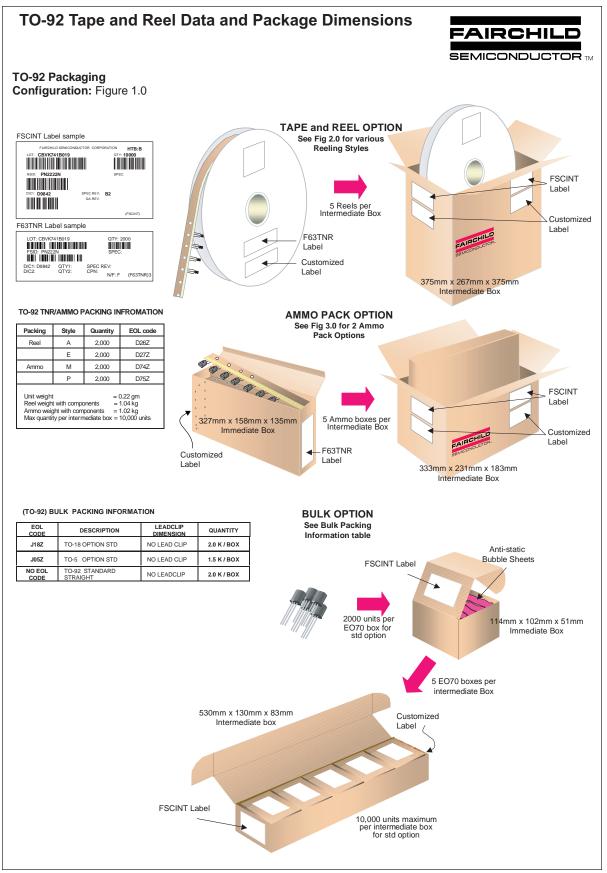
Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Мах		Units
		2N5460	*MMBF5460	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{ ext{ hetaJA}}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

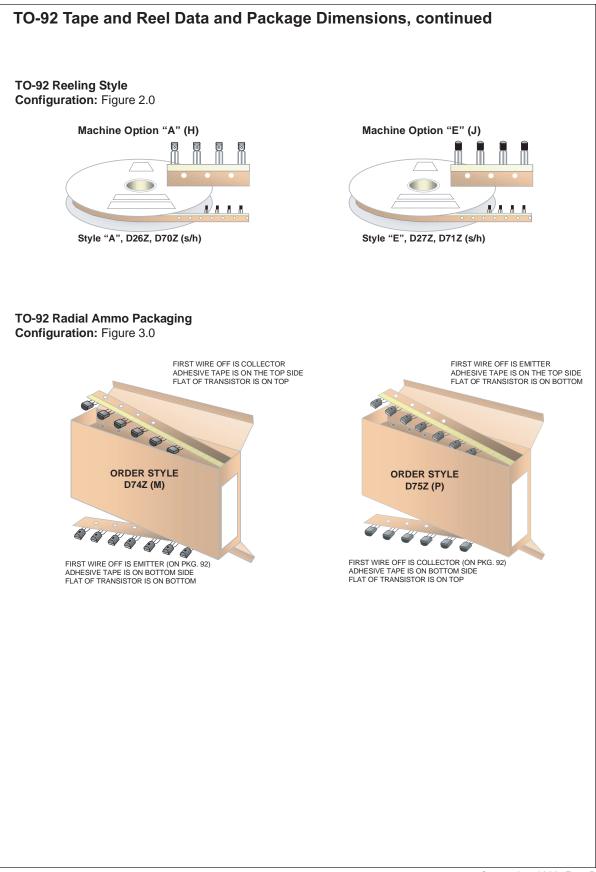

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

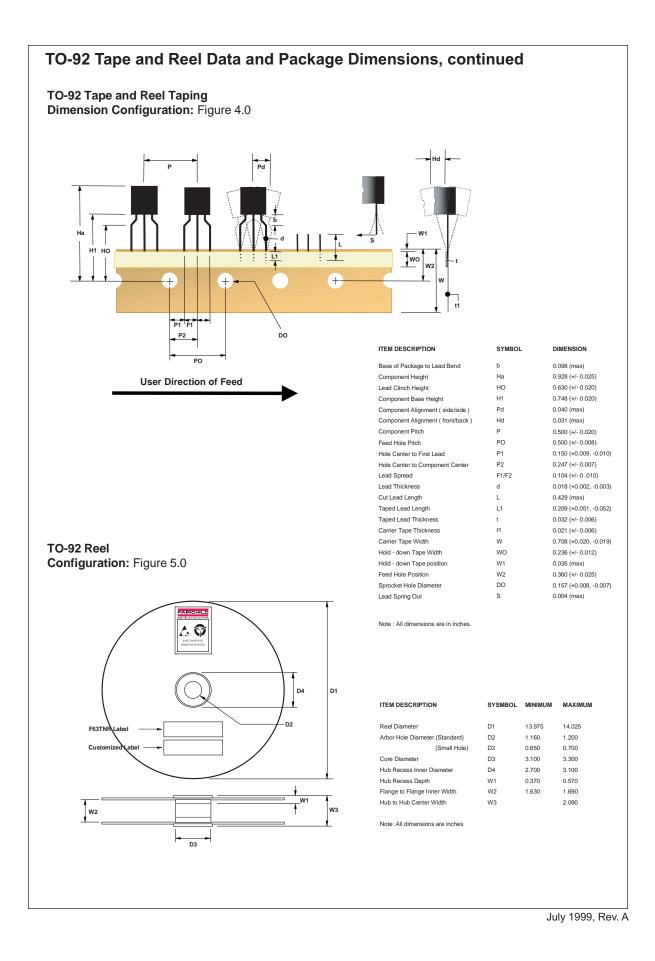
ã 1997 Fairchild Semiconductor Corporation

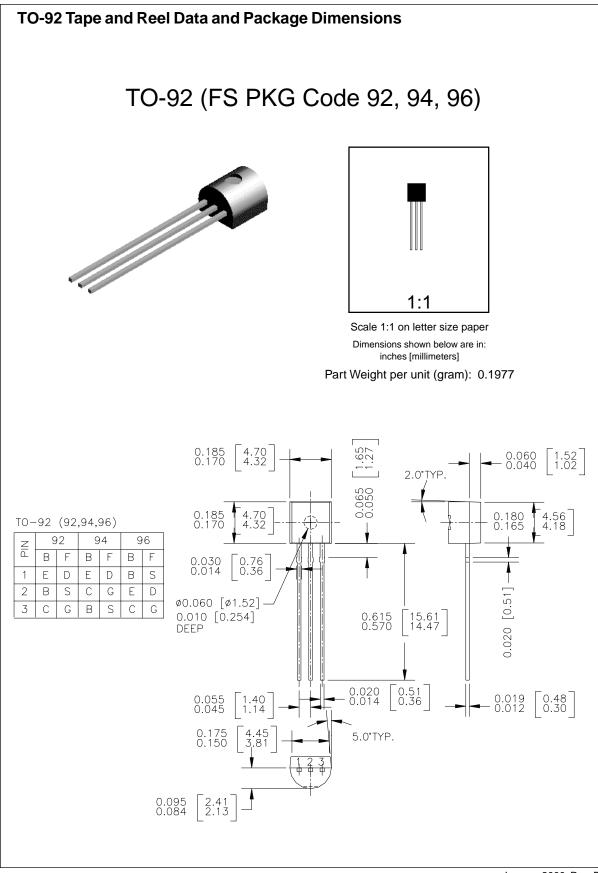

P-Channel General Purpose Amplifier

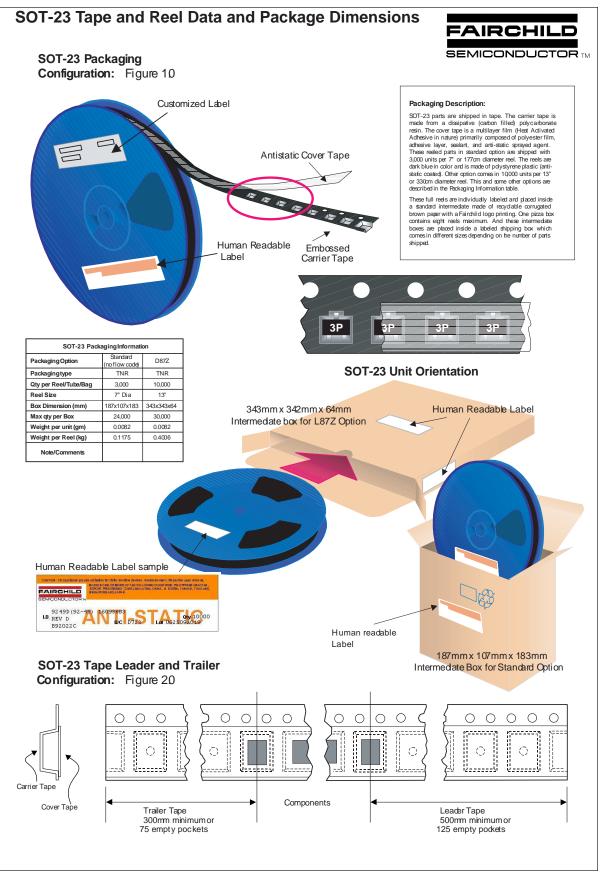

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
OFF CHA	RACTERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = 10 \ \mu A, \ V_{DS} = 0$	40		1	V
I _{GSS}	Gate Reverse Current	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0$			5.0	nA
		$V_{GS} = 20 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C}$			1.0	μΑ
V _{GS(off)}	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 1.0 \ \mu\text{A}$ 2N5460	0.75	1	6.0	V
		2N5461	1.0 1.8	1	7.5 9.0	V V
V _{GS}	Gate-Source Voltage	2N5462 V _{DS} = 15 V, I _D = 0.1 mA 2N5460	0.5		9.0 4.0	V
V GS	Cale Course Voltage	$V_{DS} = 15 \text{ V}, I_D = 0.2 \text{ mA}$ 2N5461	0.8	1	4.5	v
		$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 0.4 \text{ mA}$ 2N5462	1.5	1	6.0	V
ON CHAF	ACTERISTICS Zero-Gate Voltage Drain Current*	$V_{DS} = 15 V, V_{GS} = 0$ 2N5460 2N5461 2N5462	- 1.0 - 2.0 - 4.0		- 5.0 - 9.0 - 16	mA mA mA
I _{DSS}		2N5461 2N5462	- 2.0		- 9.0	mA
I _{DSS}	Zero-Gate Voltage Drain Current*	2N5461 2N5462 V _{DS} = 15, V _{GS} = 0, f = 1.0 kHz	- 2.0 - 4.0		- 9.0 - 16	mA mA
I _{DSS}	Zero-Gate Voltage Drain Current*	2N5461 2N5462 V _{DS} = 15, V _{GS} = 0, f = 1.0 kHz 2N5460	- 2.0 - 4.0		- 9.0 - 16 4000	mA mA μmhos
I _{DSS}	Zero-Gate Voltage Drain Current*	2N5461 2N5462 V _{DS} = 15, V _{GS} = 0, f = 1.0 kHz	- 2.0 - 4.0		- 9.0 - 16	mA mA μmhos μmhos
I _{DSS} SMALL SI 9fs	Zero-Gate Voltage Drain Current*	2N5461 2N5462 V _{DS} = 15, V _{GS} = 0, f = 1.0 kHz 2N5460 2N5461	- 2.0 - 4.0 1000 1500		- 9.0 - 16 4000 5000	mA mA μmhos μmhos
I _{DSS} SMALL SI 9fs 9os	Zero-Gate Voltage Drain Current*	$\frac{2 \text{N5461}}{2 \text{N5462}}$ V_{DS} = 15, V_{GS} = 0, f = 1.0 kHz $\frac{2 \text{N5460}}{2 \text{N5461}}$ 2N5461 2N5462	- 2.0 - 4.0 1000 1500	5.0	- 9.0 - 16 4000 5000 6000	mA mA
I _{DSS}	Zero-Gate Voltage Drain Current*	$\begin{tabular}{ c c c c c } & 2N5461 \\ & 2N5462 \\ \hline V_{DS} = 15, V_{GS} = 0, f = 1.0 kHz \\ & 2N5460 \\ & 2N5461 \\ & 2N5462 \\ \hline V_{DS} = 15, V_{GS} = 0, f = 1.0 kHz \\ \hline \end{tabular}$	- 2.0 - 4.0 1000 1500	5.0	- 9.0 - 16 4000 5000 6000 75	mA mA μmhos μmhos μmhos
I _{DSS} SMALL SI Difs Dos Ciss	Zero-Gate Voltage Drain Current* GNAL CHARACTERISTICS Forward Transfer Conductance Output Conductance Input Capacitance	$\label{eq:VDS} \begin{array}{c} 2\text{N5461}\\ 2\text{N5462} \end{array}$ $V_{DS} = 15, \ V_{GS} = 0, \ f = 1.0 \ \text{kHz}\\ 2\text{N5460}\\ 2\text{N5461}\\ 2\text{N5461}\\ 2\text{N5462} \end{array}$ $V_{DS} = 15, \ V_{GS} = 0, \ f = 1.0 \ \text{kHz}\\ V_{DS} = 15, \ V_{GS} = 0, \ f = 1.0 \ \text{MHz}\\ V_{DS} = 15, \ V_{GS} = 0, \ f = 1.0 \ \text{MHz}\\ V_{DS} = 15, \ V_{GS} = 0, \ f = 1.0 \ \text{MHz}\\ V_{DS} = 15, \ V_{GS} = 0, \ f = 1.0 \ \text{MHz}\\ \end{array}$	- 2.0 - 4.0 1000 1500		- 9.0 - 16 4000 5000 6000 75 7.0	mA mA μmhos μmhos μmhos μmhos
I _{DSS} SMALL SI Dfs Dos Ciss Crss	Zero-Gate Voltage Drain Current*	$\label{eq:VDS} \begin{array}{c} 2\text{N5461} \\ 2\text{N5462} \end{array}$ $V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{kHz} \\ 2\text{N5460} \\ 2\text{N5461} \\ 2\text{N5461} \\ 2\text{N5462} \end{array}$ $V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{kHz} \\ V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{MHz} \\ V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{MHz} \end{array}$	- 2.0 - 4.0 1000 1500	1.0	- 9.0 - 16 4000 5000 6000 75 7.0 2.0	mA mA μmhos μmhos μmhos μmhos pF pF

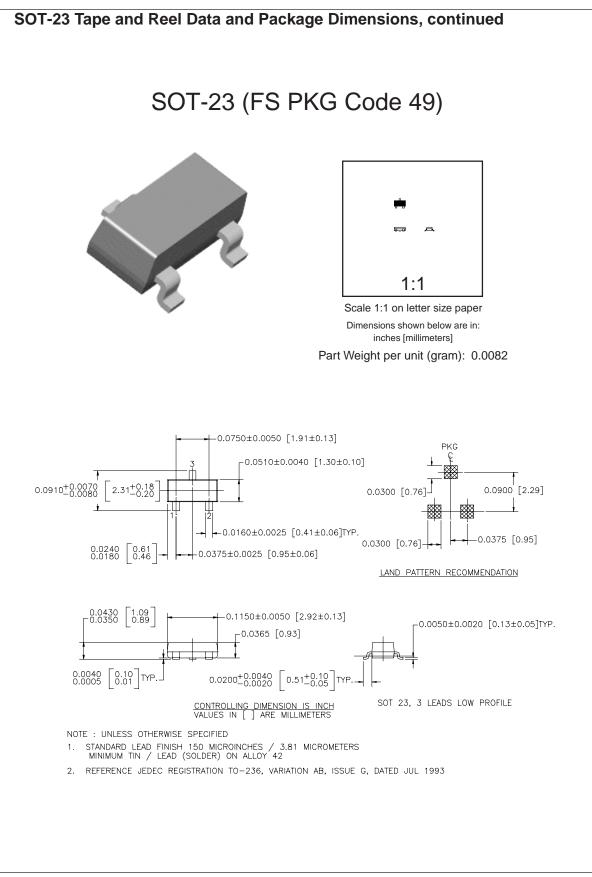
2N5460 / 2N5461 / 2N5462 / MMBF5460 / MMBF5461




2N5460 / 2N5461 / 2N5462 / MMBF5460 / MMBF5461




September 1999, Rev. B


January 2000, Rev. B

September 1999, Rev. C

September 1999, Rev. C

September 1998, Rev. A1

TRADEMARKS

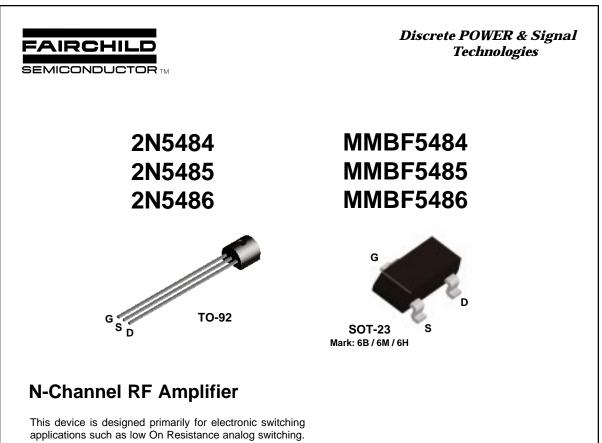
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR™ MICROWIRE™ POP™ PowerTrench® QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY


FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Sourced from Process 50.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DG}	Drain-Gate Voltage	25	V
V_{GS}	Gate-Source Voltage	- 25	V
I_{GF}	Forward Gate Current	10	mA
T _J ,T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

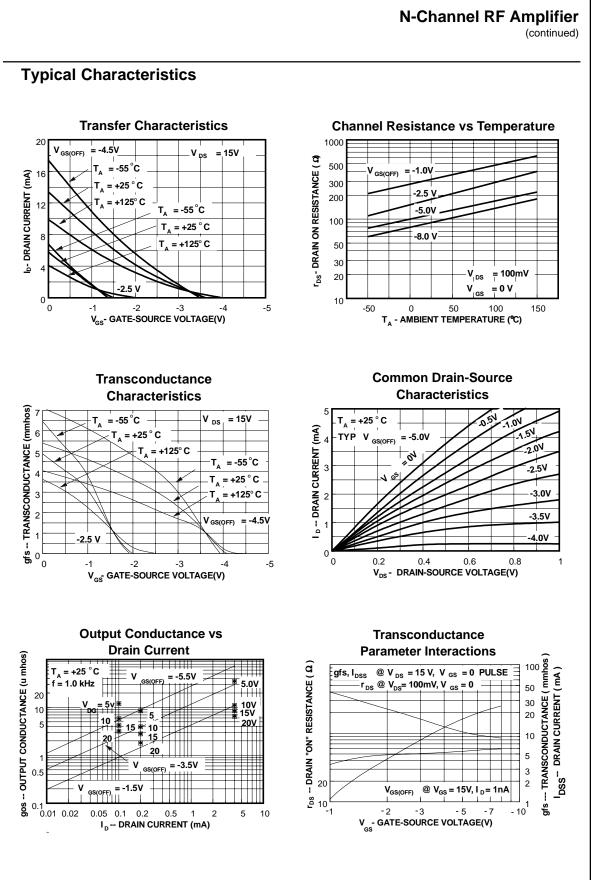
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

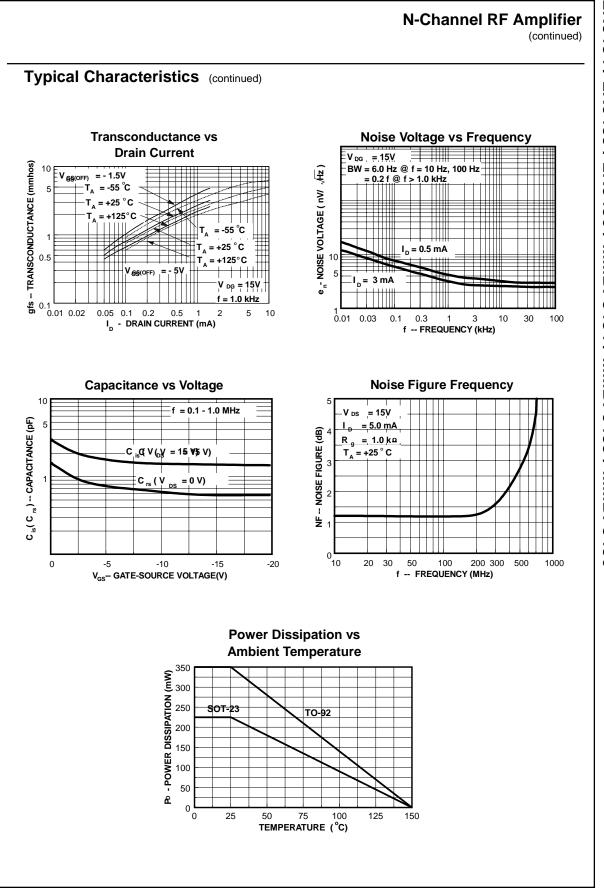
1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

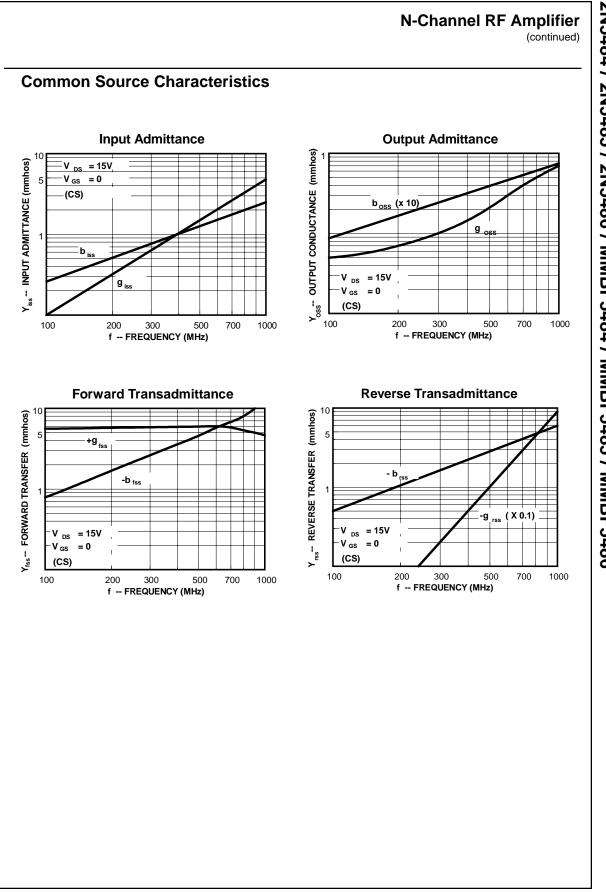
Thermal Characteristics TA = 25°C unless otherwise noted

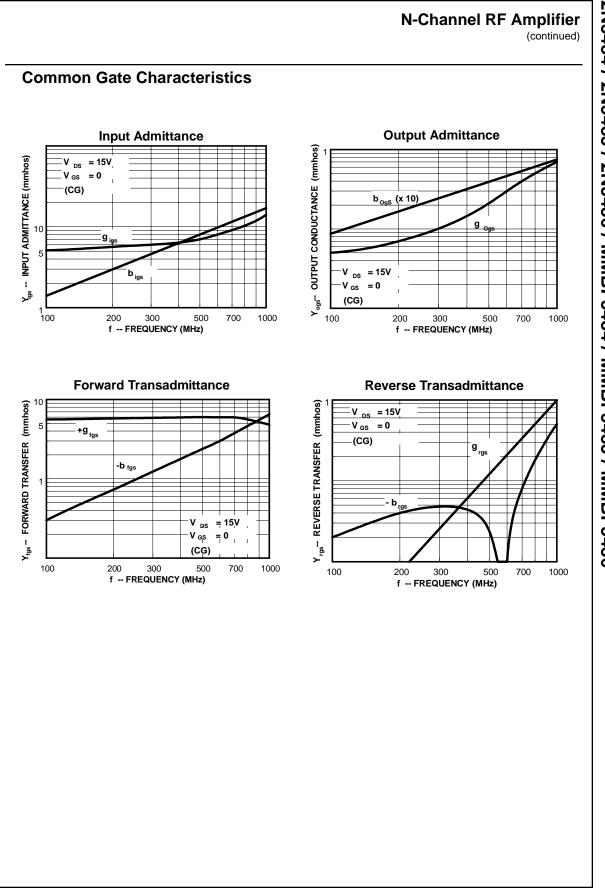

Symbol	Characteristic	M	Units	
		2N5484	*MMBF5484	
P _D	Total Device Dissipation	350	225	mW
	Derate above 25°C	2.8	1.8	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{ ext{ hetaJA}}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."


ã 1997 Fairchild Semiconductor Corporation

		N-Channel RF Amplifie (continued				
Electrical Characteristics TA = 25°C unless otherwise noted						
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
OFF CHA	RACTERISTICS					
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = -1.0 \ \mu A, \ V_{DS} = 0$	- 25			V
I _{GSS}	Gate Reverse Current	$V_{GS} = -20 \text{ V}, V_{DS} = 0$			- 1.0 - 0.2	nA μA
V _{GS(off)}	Gate-Source Cutoff Voltage	$\label{eq:V_SS} \begin{array}{c} V_{GS} = -\ 20\ V, \ V_{DS} = 0, \ T_A = 100^\circ C \\ V_{DS} = 15\ V, \ I_D = 10\ nA \\ 2N5484 \\ 2N5485 \\ 2N5486 \end{array}$	- 0.3 - 0.5 - 2.0		- 3.0 - 4.0 - 6.0	V V V
	RACTERISTICS					
	Zero-Gate Voltage Drain Current*	V _{DS} = 15 V, V _{GS} = 0 2N5484	1.0		5.0	mA
		$v_{\rm DS} = 13 v, v_{\rm GS} = 0$ 2N5484 2N5485	4.0		10	mA
		2N5486	8.0		20	mA
		2N5485 2N5486	3500 4000		7000 8000	μmhos μmhos
9fs	Forward Transfer Conductance	V _{DS} = 15, V _{GS} = 0, f = 1.0 kHz 2N5484	3000		6000	μmhos
		2N5486				
Re ₍ y _{is)}	Input Conductance	$V_{DS} = 15, V_{GS} = 0, f = 100 \text{ MHz}$ 2N5484			100	μmhos
		$V_{DS} = 15, V_{GS} = 0, f = 400 \text{ MHz}$ 2N5485 / 2N5486			1000	μmhos
g _{os}	Output Conductance	$V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{ kHz}$				μιπιου
		2N5484			50	μmhos
		2N5485			60 75	μmhos
Re ₍ y _{os)}	Output Conductance	2N5486 V _{DS} = 15, V _{GS} = 0, f = 100 MHz 2N5484			75	μmhos μmhos
		$V_{DS} = 15, V_{GS} = 0, f = 400 \text{ MHz}$ 2N5485 / 2N5486			100	umhos
Re ₍ y _{fs)}	Forward Transconductance	$V_{DS} = 15, V_{GS} = 0, f = 100 \text{ MHz}$ 2N5484	2500			μmhos
		V _{DS} = 15, V _{GS} = 0, f = 400 MHz 2N5485	3000			umboo
		2N5485 2N5486	3500			μmhos μmhos
C _{iss}	Input Capacitance	$V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{ MHz}$			5.0	pF
Srss	Reverse Transfer Capacitance	$V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{ MHz}$			1.0	pF
Coss	Output Capacitance	$V_{DS} = 15, V_{GS} = 0, f = 1.0 \text{ MHz}$			2.0	pF
NF	Noise Figure	V_{DS} = 15 V, R _G = 1.0 kΩ, f = 100 MHz 2N5484			3.0	dB
				4.0		dB
		$V_{DS} = 15 V$, $R_G = 1.0 R\Omega_2$, f = 100 MHz 2N5485 / 2N5486 $V_{DS} = 15 V$, $R_G = 1.0 k\Omega$,			2.0	dB


*Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 2%


2N5484 / 2N5485 / 2N5486 / MMBF5484 / MMBF5485 / MMBF5486

2N5484 / 2N5485 / 2N5486 / MMBF5484 / MMBF5485 / MMBF5486

2N5484 / 2N5485 / 2N5486 / MMBF5484 / MMBF5485 / MMBF5486

2N5484 / 2N5485 / 2N5486 / MMBF5484 / MMBF5485 / MMBF5486

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

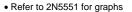
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

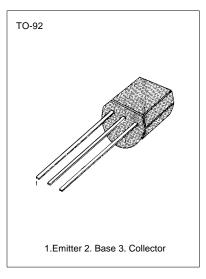
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.


NPN EPITAXIAL SILICON TRANSISTOR


AMPLIFIER TRANSISTOR

• Collector-Emitter Voltage: V_{CEO}= 140V • Collector Dissipation: P_C (max)=625mW

ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Collector Dissipation Junction Temperature Storage Temperature	V _{CEO} V _{CEO} V _{EBO} I _C P _C T _J T _{STG}	160 140 6 600 625 150 -55 ~ 150	v > > mA m ℃ ℃

ELECTRICAL CHARACTERISTICS (T_A=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage * Collector-Emitter Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cut-off Current Emitter Cut-off Current * DC Current Gain	BV _{CBO} BV _{CEO} BV _{EBO} I _{CBO} I _{EBO} h _{FE}	$I_{C}=100\mu A, I_{E}=0$ $I_{C}=1mA, I_{B}=0$ $I_{E}=10\mu A, I_{C}=0$ $V_{CB}=100V, I_{E}=0$ $V_{EB}=4V, I_{C}=0$ $I_{C}=1mA, V_{CE}=5V$ $I_{C}=10mA, V_{CE}=5V$	160 140 6 60		100 50	V V nA nA
* Collector-Emitter Saturation Voltage * Base-Emitter Saturation Voltage Current Gain Bandwidth Product	V _{CE} (sat) V _{BE} (on) f _T	$\begin{array}{l} l_{c}=50mA, \ V_{CE}=5V\\ l_{c}=10mA, \ l_{B}=5mA\\ l_{C}=50mA, \ l_{B}=5mA\\ l_{C}=10mA, \ l_{B}=1mA\\ l_{C}=50mA, \ l_{B}=5mA\\ l_{C}=10mA, \ V_{CE}=10V \end{array}$	20 20		250 0.15 0.25 1 1.2 300	V V V MHz
Output Capacitance Noise Figure	С _{ов} NF	$\begin{array}{l} V_{CB} = 10V, \ I_E = 0 \\ f = 1MHz \\ I_C = 250 \mu A, \ V_{CE} = 5V \\ R_S = 1K\Omega \\ f = 10Hz \ to \ 15.7 \text{KHz} \end{array}$			6 10	pF dB

* Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Discrete POWER & Signal **Technologies**

2N5551

MMBT5551

NPN General Purpose Amplifier

This device is designed for general purpose high voltage amplifiers and gas discharge display driving. Sourced from Process 16.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	160	V
V _{CBO}	Collector-Base Voltage	180	V
V _{EBO}	Emitter-Base Voltage	6.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

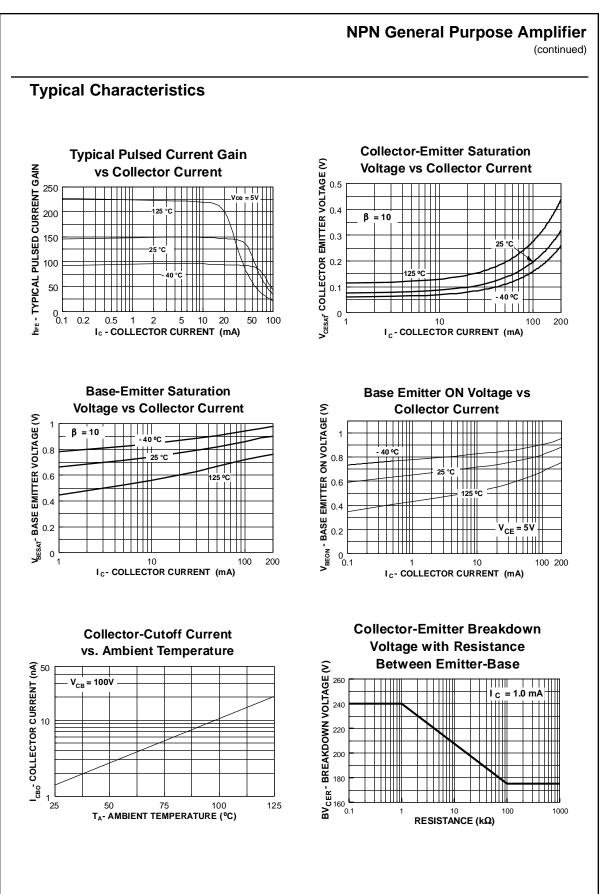
Symbol	Characteristic	Max		Units
		2N5551	*MMBT5551	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{\theta_{JC}}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

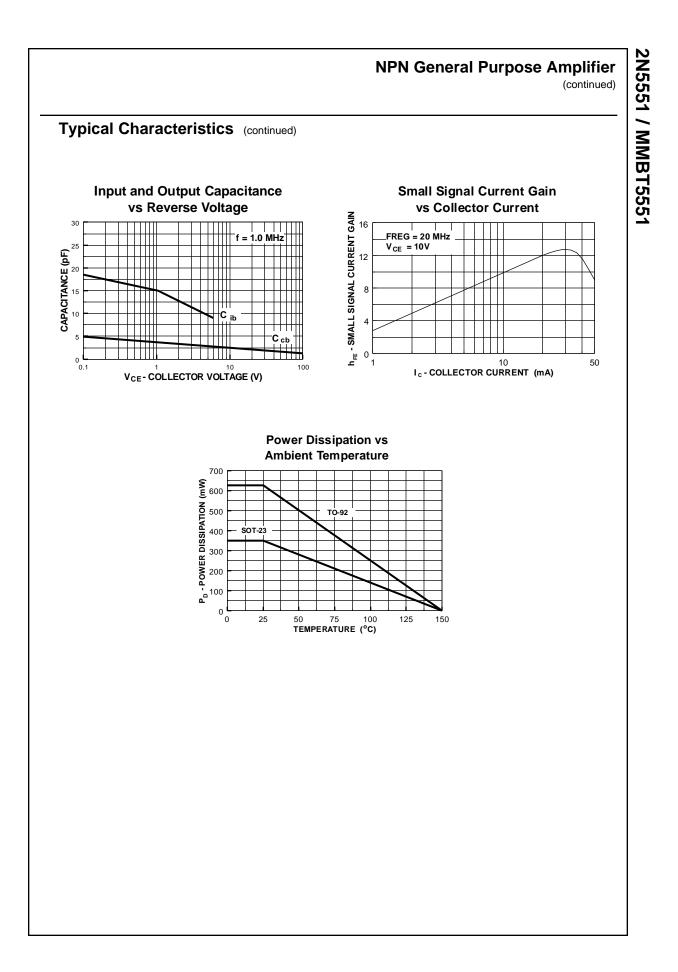
NPN General Purpose Amplifier

(continued)

Electr	ical Characteristics TA	= 25°C unless otherwise noted			
Symbol	Parameter	Test Conditions	Min	Мах	Units
	·			-	
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Sustaining Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	160		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu \text{A}, I_{\rm E} = 0$	180		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu A, I_{\rm C} = 0$	6.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 120 \text{ V}, \text{ I}_{\text{E}} = 0,$		50	nA
000		$V_{CB} = 120 \text{ V}, \text{ I}_{\text{E}} = 0, \text{ T}_{\text{A}} = 100^{\circ}\text{C}$		50	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$		50	nA
h _{FE}	DC Current Gain	$I_{c} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_{c} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_{c} = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_{c} = 10 \text{ mA}, I_{c} = 1.0 \text{ mA}$	80 80 30	250 0.15	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10$ mA, $I_{\rm B} = 1.0$ mA		0.15	V
N/	Base-Emitter Saturation Voltage	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 5.0 \text{ mA}$ $I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.20	V V
V _{BE(sat)}	Base-Emiller Saturation Voltage	$I_{\rm C} = 10$ mA, $I_{\rm B} = 1.0$ mA $I_{\rm C} = 50$ mA, $I_{\rm B} = 5.0$ mA		1.0	v
SMALL SI	GNAL CHARACTERISTICS Current Gain - Bandwidth Product	$I_c = 10 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	100	300	MHz
C _{obo}	Output Capacitance	$V_{CB} = 10 V, I_E = 0,$ f = 1.0 MHz		6.0	pF
Cibo	Input Capacitance	$V_{BE} = 0.5 \text{ V}, I_C = 0,$ f = 1.0 MHz		20	pF
h _{fe}	Small-Signal Current Gain	$I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 1.0 kHz	50	250	
NF	Noise Figure	I_{c} = 250 μA, V_{CE} = 5.0 V, R _s =1.0 kΩ, f=10 Hz to 15.7 kHz		8.0	dB


*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

Spice Model



NPN (ls=2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 Ne=1.249 lse=2.511f lkf=.3458 Xtb=1.5 Br=3.197 Nc=2 lsc=0 lkr=0 Rc=1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc=.5 Cje=18.79p Mje=.3416 Vje=.75 Tr=1.202n Tf=560p ltf=50m Vtf=5 Xtf=8 Rb=10)

2N5551 / MMBT5551

Discrete POWER & Signal **Technologies**

2N5769

2N5769

FAIRCHILD

SEMICONDUCTOR TM

NPN Switching Transistor

This device is designed for high speed saturated switching applications at currents to 100 mA. Sourced from Process 21. See PN2369A for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	15	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	4.5	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Thermal Characteristics TA = 25°C unless otherwise noted						
Symbol	Characteristic	Max	Units			
		2N5769				
P _D	Total Device Dissipation Derate above 25°C	350 2.8	mW mW/°C			
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W			
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W			

NPN Switching Transistor

0.59

1.02

1.15

1.6

V

V

V

(continued)

Symbol	Parameter	Test Conditions	Min	Мах	Units
• • • • • •				max	•
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	15		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu A, I_{\rm E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu A, I_{\rm C} = 0$	4.5		V
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 10 \ \mu A, I_{\rm B} = 0$	40		V
I _{сво}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, \text{ I}_{E} = 0$ $V_{CB} = 20 \text{ V}, \text{ I}_{E} = 0, \text{ T}_{A} = 125 ^{\circ}\text{C}$		0.4 30	μΑ μΑ
CES	Collector Cutoff Current	$V_{CE} = 20 \text{ V}, \text{ I}_{B} = 0$		0.4	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 4.5 \text{ V}, I_{C} = 0$		1.0	μA
	ACTERISTICS*	F	T	r	
h _{FE}	DC Current Gain	$I_{C} = 10 \text{ mA}, V_{CE} = 0.35 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 0.35 \text{ V}$	40	120	
		$T_A = -55 \text{ °C}$	20		
		$I_{\rm C} = 30 \text{ mA}, V_{\rm CE} = 0.40 \text{ V}$	30		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{C} = 100 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$	20	0.2	V
V CE(Sal)		$I_{\rm C} = 10$ mA, $I_{\rm B} = 1.0$ mA		0.2	·
		T _A = 125 °C		0.3	V
		$I_{\rm C} = 30 \text{ mA}, I_{\rm B} = 3.0 \text{ mA}$		0.25	V
		$I_{\rm C} = 100 \text{ mA}, I_{\rm B} = 10 \text{ mA}$		0.5	V
14	Doop Emitter Coturation Valtage	1 10 m 1 1 0 m 1	07	0.05	1/
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$	0.7	0.85	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $T_{A} = 125 \text{ °C}$ $I_{C} = 10 \text{ mA}, I_{C} = 1.0 \text{ mA}$	0.7 0.59	0.85 1.02	v v

SMALL SIGNAL CHARACTERISTICS

C _{cb}	Collector-Base Capacitance	$V_{CB} = 5.0 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		4.0	pF
h _{fe}	Small-Signal Current Gain	$I_{\rm C}$ = 10 mA, $V_{\rm CE}$ = 10 V, f = 100 MHz	5.0		

 $I_{c} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$ $T_{A} = -55 \text{ °C}$

 $I_{c} = 30 \text{ mA}, I_{B} = 3.0 \text{ mA}$ $I_{c} = 100 \text{ mA}, I_{B} = 10 \text{ mA}$

SWITCHING CHARACTERISTICS

t _{on}	Turn-on Time	I _C = 10 mA,	12	ns
t _{off}	Turn-off Time	$I_{B1} = 3.0 \text{ mA}, I_{B2} = 1.5 \text{ mA}$	18	ns
ts	Storage Time	$I_{\rm C} = I_{\rm B1} = I_{\rm B2} = 10 \text{ mA}$	13	ns

*Pulse Test: Pulse Width \leq 300 $\mu s, \, Duty \, Cycle \leq 2.0\%$

2N5769

Discrete POWER & Signal **Technologies**

2N5770

FAIRCHILD SEMICONDUCTOR TM

2N5770

NPN RF Transistor

This device is designed for use as RF amplifiers, oscillators and multipliers with collector currents in the 1.0 mA to 30 mA range. Sourced from Process 43. See PN918 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	15	V
V _{CBO}	Collector-Base Voltage	30	V
V_{EBO}	Emitter-Base Voltage	4.5	V
Ic	Collector Current - Continuous	50	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES: 1) These ratings are based on a maximum junction temperature of 150 degrees C. 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Therm	TA = 25°C unless otherwis	e noted	
Symbol	Characteristic	Мах	Units
		2N5770	
P _D	Total Device Dissipation Derate above 25°C	350 2.8	mW mW/°C
$R_{\theta_{JC}}$	Thermal Resistance, Junction to Case	125	°C/W
R _{eJA}	Thermal Resistance, Junction to Ambient	357	°C/W

NPN RF Transistor

(continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 3.0 \text{ mA}, I_{\rm B} = 0$	15		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 1.0 \ \mu A, I_{E} = 0$	30		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu {\rm A}, I_{\rm C} = 0$	4.5		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 15 \text{ V}, \text{ I}_{E} = 0$		10	nA
		$V_{CB} = 15 \text{ V}, \text{ I}_{E} = 0, \text{ T}_{A} = 150 \text{ °C}$		1.0	μA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_C = 0$ $V_{EB} = 2.0 \text{ V}, I_C = 0$		10 1.0	μA μA
		$\mathbf{v}_{EB} = 1 0 \mathbf{v}, \mathbf{n} \mathbf{c} = 0$		1.0	μι
	RACTERISTICS*	$V_{CE} = 1.0 \text{ V}, I_{C} = 3.0 \text{ mA}$	20		
IFE	De cullent Gam	$V_{CE} = 1.0 \text{ V}, I_C = 3.0 \text{ mA}$ $V_{CE} = 10 \text{ V}, I_C = 8.0 \text{ mA}$	20 50	200	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10$ mA, $I_{\rm B} = 1.0$ mA		0.4	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		1.0	V
NF	Noise Figure	I_{c} = 1.0 mA, V_{cE} = 8.0 V, f = 60 MHz, Rg = 400 Ω		6.0	dB
C _{cb}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1.0 \text{ MHz}$	0.7	1.1	pF
Cib	Input Capacitance	V _{EB} = 0.5 V		2.0	pF
h _{fe}	Small-Signal Current Gain	$ I_{C} = 8.0 \text{ mA}, V_{CE} = 10 \text{ V}, $ f = 100 MHz I_{C} = 8.0 mA, V_{CE} = 10 \text{ V},	9.0	18	
		f = 1.0 kHz	40	240	
rb'C _c	Collector-Base Time Constant	f = 1.0 kHz I _E = 8.0 mA, V _{CB} = 10 V,	40 3.0	240 20	pS
rb'C _C	Collector-Base Time Constant	f = 1.0 kHz			pS
-		f = 1.0 kHz I _E = 8.0 mA, V _{CB} = 10 V,			pS
FUNCTIC	Collector-Base Time Constant	f = 1.0 kHz I _E = 8.0 mA, V _{CB} = 10 V,			pS dB
FUNCTIC G _{pe}	NAL TEST		3.0		
rb'C _c FUNCTIC G _{pe} Ρο η	NAL TEST Amplifier Power Gain	$\begin{array}{l} f = 1.0 \text{ kHz} \\ I_{E} = 8.0 \text{ mA}, \text{ V}_{CB} = 10 \text{ V}, \\ f = 79.8 \text{ MHz} \end{array}$ $I_{C} = 6.0 \text{ mA}, \text{ V}_{CB} = 12 \text{ V}, \\ f = 200 \text{ MHz} \end{array}$	3.0 15		dB

or (ed) **2N5770**

collector currents to 100 mA. Sourced from Process 65. See PN4258 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	15	V
V _{CBO}	Collector-Base Voltage	15	V
V _{EBO}	Emitter-Base Voltage	4.5	V
Ic	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Ν	Мах	
		2N5771	*MMBT5771	
P _D	Total Device Dissipation Derate above 25°C	350 2.8	225 1.8	mW mW/°C
$R_{\theta_{JC}}$	Thermal Resistance, Junction to Case	125		°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	357	556	°C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

PNP Switching Transistor (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS			•	•
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 3.0$ mA, $I_{\rm B} = 0$	15		V
V _{(BR)CES}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 100 \ \mu A, V_{\rm BE} = 0$	15		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, I_{\rm E} = 0$	15		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 100 \ \mu A, I_C = 0$	4.5		V
I _{сво}	Collector Cutoff Current	$V_{CB} = 8.0 \text{ V}, I_E = 0$		10	nA
I _{CES}	Collector Cutoff Current	$V_{CE} = 8.0 \text{ V}, V_{BE} = 0$		10	nA
I _{EBO}	Emitter Cutoff Current	$V_{CE} = 8.0 \text{ V}, V_{BE} = 0, T_A = 125^{\circ}\text{C}$ $V_{EB} = 4.5 \text{ V}, I_C = 0$		5.0 1.0	μΑ μΑ
ON CHAF	RACTERISTICS*	I _c = 1.0 mA, V _{ce} = 0.5 V	35		
.,		$ \begin{array}{l} I_{C} = 10 \text{ mA}, V_{CE} = 0.3 \text{ V} \\ I_{C} = 10 \text{ mA}, V_{CE} = 0.3 \text{ V}, T_{A} = -55^{\circ}\text{C} \\ I_{C} = 50 \text{ mA}, V_{CE} = 1.0 \text{ V} \end{array} $	50 20 40	120	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$ I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA} $ $ I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA} $ $ I_{C} = 50 \text{ mA}, I_{B} = 5.0 \text{ mA} $		0.15 0.18 0.6	V V V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$ \begin{array}{l} I_{C} = 1.0 \text{ mA}, \ I_{B} = 0.1 \text{ mA} \\ I_{C} = 10 \text{ mA}, \ I_{B} = 1.0 \text{ mA} \\ I_{C} = 50 \text{ mA}, \ I_{B} = 5.0 \text{ mA} \end{array} $	0.75	0.8 0.95 1.5	V V V
SMALL S	IGNAL CHARACTERISTICS				
C _{cb}	Collector-Base Capacitance	$V_{CB} = 5.0 \text{ V}, I_E = 0,$ f = 140 kHz		3.0	pF
Ceb	Emitter-Base Capacitance	$V_{BE} = 0.5 \text{ V}, I_C = 0,$ f = 140 kHz		3.5	pF
h _{fe}	Small-Signal Current Gain	$I_{\rm C} = 10 \text{ mA}, V_{\rm CE} = 10 \text{ V}, f = 100 \text{ MHz}$	8.5		MHz
SWITCHI	NG CHARACTERISTICS				
ts	Storage Time	$I_{C} = 10 \text{ mA}, V_{CC} = 1.5 \text{ V},$ $I_{B1} = I_{B2} = 1.0 \text{ mA}$		20	ns
t _{on}	Turn-On Time	$I_{c} = 10 \text{ mA}, V_{cc} = 1.5 \text{ V},$		15	ns
t _{off}	Turn-Off Time	$ I_B = 1.0 \text{ mA} $		20	ns
	: Pulse Width ≤ 300 μs, Duty Cycle ≤2.0%				

2N5771 / MMBT5771

Discrete POWER & Signal Technologies

2N6427

MMBT6427

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at collector currents to 1.0 A. Sourced from Process 05. See MPSA14 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	12	V
Ic	Collector Current - Continuous	1.2	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

Ν

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units
		2N6427	*MMBT6427	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{\theta_{JC}}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

NPN Darlington Transistor (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \ \mu A, I_C = 0$	12		V
CEO	Collector Cutoff Current	$V_{CE} = 25 \text{ V}, \text{ I}_{B} = 0$		1.0	μA
СВО	Collector Cutoff Current	$V_{CB} = 30 \text{ V}, \text{ I}_{E} = 0$		50	nA
EBO	Emitter Cutoff Current	$V_{EB} = 10 \text{ V}, I_{C} = 0$		50	nA

h _{FE}	DC Current Gain*	$I_{c} = 10 \text{ mA}, V_{ce} = 5.0 \text{ V}$	10,000	100,000	
		$I_{C} = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$	20,000	200,000	
		$I_{C} = 500 \text{ mA}, V_{CE} = 5.0 \text{ V}$	14,000	140,000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$		1.2	V
		$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$		1.5	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$		2.0	V
V _{BE(on)}	Base-Emitter On Voltage	$I_{C} = 50 \text{ mA}, V_{CE} = 5.0 \text{ mA}$		1.75	V

SMALL SIGNAL CHARACTERISTICS

C _{obo}	Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0,$ f = 1.0 MHz	7.0	pF
C _{ibo}	Input Capcitance	$V_{BE} = 1.0 \text{ V}, I_{C} = 0,$ f = 1.0 MHz	15	pF

*Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

2N6427 / MMBT6427

Discrete POWER & Signal **Technologies**

2N5830

2N5830

NPN General Purpose Amplifier

This device is designed for general purpose high voltage amplifiers and gas discharge display driving. Sourced from Process 16. See 2N5551 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	100	V
V _{CBO}	Collector-Base Voltage	120	V
V_{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Therm	TA = 25°C unless otherw	ise noted	
Symbol	Characteristic	Мах	Units
		2N5830	
PD	Total Device Dissipation	625	mW
	Derate above 25°C	5.0	mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

Symbol	Parameter	Test Conditions	Min	Мах	Units
	DAGTERIOTIOO				
	RACTERISTICS				<u> </u>
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	100		V
/ _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	120		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 10 \ \mu A, I_{C} = 0$	5.0		V
СВО	Collector Cutoff Current	$V_{CB} = 100 \text{ V}, I_E = 0$ $V_{CB} = 100 \text{ V}, I_E = 0, T_A = 100 ^{\circ}\text{C}$		50 25	nA μA
	Emitter Cutoff Current	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$	60	50	nA
ON CHAF		$V_{EB} = 4.0 \text{ V}, I_{C} = 0$	60		
ON CHAF	ACTERISTICS*	$V_{EB} = 4.0 \text{ V}, I_C = 0$ $V_{CE} = 5.0 \text{ V}, I_C = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$	80		
ON CHAF	ACTERISTICS*	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$ $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}$		50 500	nA
ON CHAF	ACTERISTICS*	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$ $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$	80	50 500 0.15	nA NA
-	ACTERISTICS*	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$ $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$	80	50 500 0.15 0.2	nA V V
ON CHAF ^D FE V _{CE(sat)}	ACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage	$\begin{split} V_{EB} &= 4.0 \text{ V}, \text{ I}_{C} = 0 \\ \\ V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 10 \text{ mA} \\ V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 50 \text{ mA} \\ \\ \text{I}_{C} &= 1.0 \text{ mA}, \text{ I}_{B} = 0.1 \text{ mA} \\ \text{I}_{C} &= 10 \text{ mA}, \text{ I}_{B} = 1.0 \text{ mA} \\ \\ \text{I}_{C} &= 50 \text{ mA}, \text{ I}_{B} = 5.0 \text{ mA} \end{split}$	80	50 500 0.15 0.2 0.25	nA NA
ON CHAF	ACTERISTICS*	$V_{EB} = 4.0 \text{ V}, I_{C} = 0$ $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 50 \text{ mA}$ $I_{C} = 1.0 \text{ mA}, I_{B} = 0.1 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 1.0 \text{ mA}$	80	50 500 0.15 0.2	NA NA V V V
ON CHAF D _{FE} √ _{CE(sat)}	ACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage	$\begin{split} V_{EB} &= 4.0 \text{ V}, \text{ I}_{C} = 0 \\ \\ V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 10 \text{ mA} \\ V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 50 \text{ mA} \\ \\ \text{I}_{C} &= 1.0 \text{ mA}, \text{ I}_{B} = 0.1 \text{ mA} \\ \text{I}_{C} &= 10 \text{ mA}, \text{ I}_{B} = 5.0 \text{ mA} \\ \\ \text{I}_{C} &= 1.0 \text{ mA}, \text{ I}_{B} = 0.1 \text{ mA} \\ \\ \text{I}_{C} &= 1.0 \text{ mA}, \text{ I}_{B} = 0.1 \text{ mA} \\ \\ \end{array}$	80	50 500 0.15 0.2 0.25 0.8	nA V V V V

C _{cb}	Output Capacitance	$V_{CB} = 10 \text{ V}, \text{ f} = 1.0 \text{ MHz}$		4.0	pF
h _{fe}	Small-Signal Current Gain	$I_{C} = 10 \text{ mA}, V_{CE} = 10 \text{ V},$ f = 100 MHz	1.0	5.0	
h _{ie}	Input Impedance	$I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V},$		6.0	KΩ
h _{oe}	Output Admittance	f = 1.0 kHz		40	μmho
h _{fe}	Small-Signal Current Gain		60		

*Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

2N5830

2N5961

NPN General Purpose Amplifier

This device is designed for use as low noise, high gain, general purpose amplifiers requiring collector currents to 50 mA. Sourced from Process 07. See 2N5088 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Val60ue	Units
V _{CEO}	Collector-Emitter Voltage	60	V
V _{CBO}	Collector-Base Voltage	60	V
V _{EBO}	Emitter-Base Voltage	8.0	V
Ic	Collector Current - Continuous	100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Therm	al Characteristics TA = 25°C unless otherwis	e noted	
Symbol	Characteristic	Max	Units
		2N5961	
P _D	Total Device Dissipation Derate above 25℃	625 5.0	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W

NPN General Purpose Amplifier (continued)

Symbol	Parameter	Test Conditions	Min	Мах	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 5.0 \text{ mA}, I_{\rm B} = 0$	60		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$	60		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \mu {\rm A}, I_{\rm C} = 0$	8.0		V
I _{сво}	Collector Cutoff Current	$V_{CB} = 45 V, I_E = 0$ $V_{CB} = 45 V, I_E = 0, T_A = 65 ^{\circ}C$		2.0 50	nA nA
EBO	Emitter Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_{C} = 0$		1.0	nA
/ _{CE(sat)}	Collector-Emitter Saturation Voltage	$V_{CE} = 5.0 \text{ V}, I_C = 100 \ \mu\text{A}$ $V_{CE} = 5.0 \text{ V}, I_C = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$ $I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$	135 150	700 0.2	V
		$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$			
Vor (act)	Collector-Emitter Saturation Voltage		150		V
CE(Sal)		$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 1.0 \text{ mA}$		0.2	V
V _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	0.5	0.7	V
SMALL S C _{cb}	IGNAL CHARACTERISTICS Collector-Base Capacitance	V _{CB} = 5.0 V, f = 1.0 MHz		4.0	pF
C _{eb}	Emitter-Base Capacitance	V _{EB} = 0.5 V, f = 1.0 MHz		6.0	pF
h _{fe}	Small-Signal Current Gain	$ I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ f = 1.0 \text{ kHz} \\ I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ f = 100 \text{ MHz} $	150 1.0	1000	
NF	Noise Figure			3.0 3.0	dB dB
		$V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A},$ $R_{S} = 1.0 k\Omega, f = 1.0 k\text{Hz}$ $B_{W} = 400 \text{ Hz}$		6.0	dB

2N5961

Discrete POWER & Signal Technologies

2N5962

MMBT5962

NPN General Purpose Amplifier

This device is designed for use as low noise, high gain, general purpose amplifiers requiring collector currents to 50 mA. Sourced from Process 07. See 2N5088 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	45	V
V _{CBO}	Collector-Base Voltage	45	V
V _{EBO}	Emitter-Base Voltage	8.0	V
Ic	Collector Current - Continuous	100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

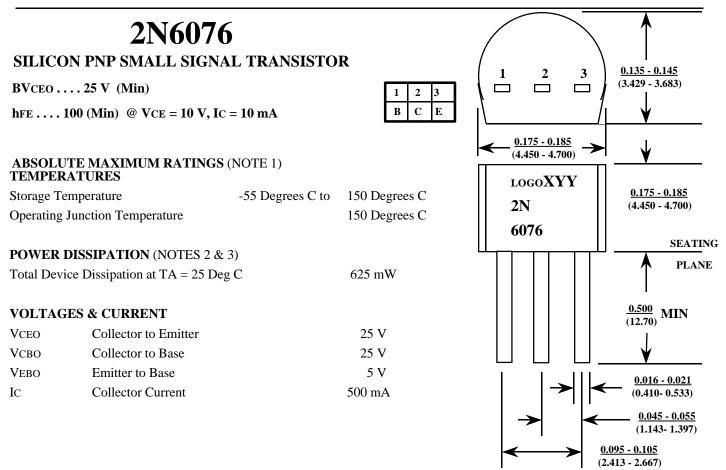
1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Ν	Max	
		2N5962	*MMBT5962	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{\theta_{JC}}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."


NPN General Purpose Amplifier (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 5.0$ mA, $I_{\rm B} = 0$	45		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 10 \ \mu {\rm A}, \ I_{\rm E} = 0$	45		V
√ _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu {\rm A}, I_{\rm C} = 0$	8.0		V
СВО	Collector Cutoff Current			2.0 50	nA nA
EBO	Emitter Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_{C} = 0$		1.0	nA
ON CHAR	ACTERISTICS*				
J ^{EE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \ \mu\text{A}$	450		
		$V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$	500		
		$V_{CE} = 5.0 \text{ V}, I_C = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_C = 10 \text{ mA}$	550 600	1400	
/ _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$		0.2	V
/ _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	0.5	0.7	V
cb Veb	Collector-Base Capacitance Emitter-Base Capacitance	V _{CB} = 5.0 V V _{EB} = 0.5 V		4.0 6.0	pF pF
	1				
lfe	Small-Signal Current Gain	$I_{\rm C} = 10 \text{ mA}, V_{\rm CE} = 5.0 \text{ V},$		0.0	۲ י
re		f = 1.0 kHz $f_c = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$	600	200	
		f = 100 MHz	1.0		
IF	Noise Figure	$ \begin{array}{l} V_{CE} = 5.0 \ V, \ I_{C} = 10 \ \mu A, \\ R_{S} = 10 \ k\Omega, \ f = 1.0 \ kHz, \\ B_{W} = 400 \ Hz \\ V_{CE} = 5.0 \ V, \ I_{C} = 100 \ \mu A, \end{array} $		3.0	dB
		$\begin{split} R_{S} &= 1.0 \ \text{k}\Omega, \ f = 1.0 \ \text{kHz}, \\ B_{W} &= 400 \ \text{Hz} \\ V_{CE} &= 5.0 \ \text{V}, \ I_{C} = 100 \ \mu\text{A}, \end{split}$		6.0	dB
				4.0	dB
				8.0	dB
		R _S = 10 kΩ, f = 10 Hz -10 kHz B _W = 15.7 kHz		3.0	dB
*Pulse Test	: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%	$V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A},$ R _S = 10 kΩ, f = 10 Hz -10 kHz			

-_ 2N5962/ MMBT5962

FAIRCHILD

DISCRETE POWER & SIGNAL TECHNOLOGIES

ELECTRICAL CHARACTERISTICS (25 Degrees C Ambient Temperature unless otherwise stated)

SYM	CHARACTERISTICS	MIN	MAX	UNITS	TEST CONDITIONS
Вусво	Collector to Base Voltage	25		V	Ic = 100 uA
BVCEO	Collector to Emitter Voltage	25		V	IC = 10 mA
BVEBO	Emitter to Base Voltage	5		V	IE = 10 uA
Ісво	Collector Cutoff Current		100	nA	VCB = 25 V
			10	uA	$VCB = 25 V, T = +100^{\circ}C$
ICES	Collector Cutoff Current		100	nA	$\mathbf{V}\mathbf{C}\mathbf{E}=25\ \mathbf{V}$
Іево	Emitter Cutoff Current		100	uA	$\mathbf{V}\mathbf{E}\mathbf{B}=~~3.0~\mathbf{V}$
hfe	DC Current Gain	100	500		$\mathbf{V}\mathbf{C}\mathbf{E} = 10 \ \mathbf{V} \qquad \mathbf{I}\mathbf{C} = 10 \ \mathbf{m}\mathbf{A}$
VCE(sat)	Collector-Emitter Saturation Voltage		0.25	V	IC = 10mA IB = 1.0mA
VBE(sat)	Base-Emitter Saturation Voltage		0.8	V	IC = 10mA IB = 1.0mA
VBE(on)	Base -Emitter On Voltage	0.5	1.2	V	$\mathbf{V}\mathbf{C}\mathbf{E} = 10 \ \mathbf{V} \mathbf{I}\mathbf{C} = 10\mathbf{m}\mathbf{A}$

2N6076

SILICON PNP SMALL SIGNAL TRANSISTOR

ELECTRICAL CHARACTERISTICS Con't (25 Degrees C Ambient Temperature unless otherwise stated)

SYM	CHARACTERISTICS	MIN	MAX	UNITS	TEST CONDITIONS
Ccb	Output Capacitance	1	13	pF	VCB = 10 V, f = 1 MHz
hfe	Small Signal Current Gain	100	750		VCE = 10 V, IC=10 mA, f=1KHz

NOTES:

1. These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

3. These ratings are based on a maximum junction temperature of 150 degrees C.

2N6426

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at currents to 1.0 A. Sourced from Process 05. See MPSA14 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V _{EBO}	Emitter-Base Voltage	12	V
I _C	Collector Current - Continuous	1.2	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

Thermal Characteristics TA = 25°C unless otherwise noted				
Symbol	Characteristic	Мах	Units	
		2N6426		
PD	Total Device Dissipation Derate above 25°C	625 5.0	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	°C/W	

NPN Darlington Transistor

Electri	ical Characteristics TA =	25°C unless otherwise noted			
ymbol	Parameter	Test Conditions	Min	Мах	Units
FF CHA	RACTERISTICS				
R)CEO	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	40		V
R)CBO	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	40		V
R)EBO	Emitter-Base Breakdown Voltage	$I_{\rm E} = 10 \ \mu A, \ I_{\rm C} = 0$	12		V
	Collector Cutoff Current	$V_{CB} = 30 \text{ V}, \text{ I}_{E} = 0$		50	nA
	Collector Cutoff Current	$V_{CE} = 25 \text{ V}, \text{ I}_{B} = 0$		1.0	μA
	Emitter Cutoff Current	$V_{EB} = 10 V, I_{C} = 0$		50	nA

ON CHARACTERISTICS*

 $V_{(BR)CEO}$ V_{(BR)CBO}

V_{(BR)EBO}

 I_{CBO}

 \mathbf{I}_{CEO}

 I_{EBO}

h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$	20,000	200,000	
		$V_{CE} = 5.0 \text{ V}, I_{C} = 100 \text{ mA}$	30,000	300,000	
		$V_{CE} = 5.0 \text{ V}, I_{C} = 500 \text{ mA}$	20,000	200,000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 50$ mA, $I_{\rm B} = 0.5$ mA		1.2	V
		$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$		1.5	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$		2.0	V
V _{BE(on)}	Base-Emitter On Voltage	$I_{C} = 50 \text{ mA}, V_{CE} = 5.0 \text{ V}$		1.75	V

SMALL SIGNAL CHARACTERISTICS

Cob	Output Capacitance	$V_{CB} = 10 \text{ V}, \text{ I}_{E} = 0, \text{ f} = 1.0 \text{ MHz}$		7.0	pF
C _{ib}	Input Capacitance	$V_{EB} = 1.0 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz}$		15	pF
h _{fe}	Small-Signal Current Gain	$I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz}$	20,000		
h _{ie}	Input Impedance	$I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$	100	2,000	kΩ
h _{oe}	Output Admittance	f = 1.0 kHz		1,000	μmho
NF	Noise Figure	$I_{c} = 1.0 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $R_{s} = 100 \text{ k}\Omega,$ $f = 10 \text{ kHz to 15.7 \text{ kHz}}$		10	dB

*Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

NPN Darlington Transistor

This device is designed for applications requiring extremely high current gain at collector currents to 1.0 A. Sourced from Process 05. See MPSA14 for characteristics.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	40	V
V _{CBO}	Collector-Base Voltage	40	V
V_{EBO}	Emitter-Base Voltage	12	V
lc	Collector Current - Continuous	1.2	A
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	N	lax	Units
		2N6427	*MMBT6427	
P _D	Total Device Dissipation	625	350	mW
R _{θJC}	Derate above 25°C Thermal Resistance, Junction to Case	5.0 83.3	2.8	mW/°C °C/W
Reja	Thermal Resistance, Junction to Ambient	200	357	°C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

NPN Darlington Transistor (continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 10 \text{ mA}, I_{\rm B} = 0$	40		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \ \mu A, I_C = 0$	12		V
CEO	Collector Cutoff Current	$V_{CE} = 25 \text{ V}, \text{ I}_{B} = 0$		1.0	μA
СВО	Collector Cutoff Current	$V_{CB} = 30 \text{ V}, \text{ I}_{E} = 0$		50	nA
EBO	Emitter Cutoff Current	$V_{EB} = 10 \text{ V}, I_{C} = 0$		50	nA

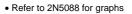
h _{FE}	DC Current Gain*	$I_{c} = 10 \text{ mA}, V_{ce} = 5.0 \text{ V}$	10,000	100,000	
		$I_{C} = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$	20,000	200,000	
		$I_{C} = 500 \text{ mA}, V_{CE} = 5.0 \text{ V}$	14,000	140,000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 50 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$		1.2	V
		$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$		1.5	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 0.5 \text{ mA}$		2.0	V
V _{BE(on)}	Base-Emitter On Voltage	$I_{C} = 50 \text{ mA}, V_{CE} = 5.0 \text{ mA}$		1.75	V

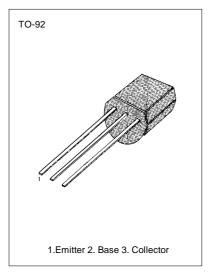
SMALL SIGNAL CHARACTERISTICS

C _{obo}	Output Capacitance	$V_{CB} = 10 \text{ V}, I_E = 0,$ f = 1.0 MHz	7.0	pF
C _{ibo}	Input Capcitance	$V_{BE} = 1.0 \text{ V}, I_{C} = 0,$ f = 1.0 MHz	15	pF

*Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

2N6427 / MMBT6427


NPN EPITAXIAL SILICON TRANSISTOR


AMPLIFIER TRANSISTOR

- Collector-Emitter Voltage: V_{CEO}= 50V
 Collector Dissipation: P_C (max)=625mW

ABSOLUTE MAXIMUM RATINGS (TA=25 °C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Collector Dissipation Junction Temperature Storage Temperature	V _{CBO} V _{CEO} V _{EBO} Ic P _C T _J T _{STG}	60 50 6 200 625 150 -55 ~ 150	V V V mA mW ບິບ

ELECTRICAL CHARACTERISTICS (T_A=25 °C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	BV _{CBO}	I _C =100,4, I _E =0	60			V
*Collector-Emitter Breakdown Voltage	BV _{CEO}	$I_{C}=1mA$, $I_{B}=0$	50			V
Collector Cut-off Current	I _{CBO}	$V_{CB}=30V, I_{E}=0$			10	nA
Collector Cut-off Current	ICEO	V _{CE} =30V, I _B =0			25	nA
Base Cut-off Current	I _{EBO}	V _{BE} =5V, I _C =0			10	
*DC Current Gain	h _{FE}	V _{CE} =5V, I _C =10,4A	250			
		V _{CE} =5V, I _C =100//A	250		650	
		$V_{CE}=5V$, $I_{C}=1mA$	250			
*Collector-Emitter Saturation Voltage		$V_{CE}=5V$, $I_{B}=10mA$	250			
Conector-Emilier Saturation voltage	V _{CE} (sat)	$I_{C}=10mA$, $I_{B}=0.5mA$			0.2	V
Base-Emitter On Voltage		I _C =100mA, I _B =5mA I _C =1mA, V _{CE} =5V			0.6	V
Output Capacitance	V _{BE} (on)	$V_{CB}=10V, I_{E}=0$	0.56		0.66	V
Output Oapaonance	COB	f=1MHz			3	pF
Current Gain Bandwidth Product	f _T	V_{CE} =5V, I _C =1mA	100		700	MHz
Noise Figure/Noise Voltage Level	NF/NV	V _{CE} =5V, I _C =100 μA (1) R _S =10kΩ, B _W =1Hz f=100Hz				
:2N6428					0/40.4	dB/nV
2N6428A					3/18.1 2/16.2	dB/nV dB/nV
		(2) R _S =50kΩ, B _W =15.7Hz f=10Hz-10KHz			2/10.2	UD/IIV
:2N6428					6/5.7	
2N6428A					6/5.7 4/4.6	dB/nV
		(1) R _S =500 Ω , B _W =1Hz f=10Hz			4/4.6	dB/nV
:2N6428					3.5/4.3	dB/nV
2N6428A					3.5/4.3 3/4.1	dB/nV dB/nV
					3/4.1	

SEMICONDUCTOR ©1999 Fairchild Semiconductor Corporation Rev. B

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

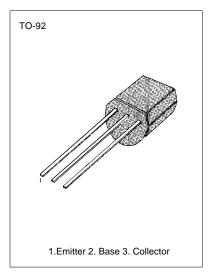
PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

2N6428/6428A

NPN EPITAXIAL SILICON TRANSISTOR


AMPLIFIER TRANSISTOR

Collector-Emitter Voltage: V_{CEO}= 50V
 Collector Dissipation: P_C (max)=625mW

ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage	V _{CBO}	60	° ° m a s < < <
Collector-Emitter Voltage	V _{CEO}	50	
Emitter-Base Voltage	V _{EBO}	6	
Collector Current	I _C	200	
Collector Dissipation	P _C	625	
Junction Temperature	T _J	150	
Storage Temperature	T _{STG}	-55 ~ 150	

• Refer to 2N5088 for graphs

ELECTRICAL CHARACTERISTICS (T_A=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Base Breakdown Voltage	BV _{CBO}	I _C =100μA, I _E =0	60			V
* Collector-Emitter Breakdown Voltage	BV _{CEO}	$I_{C}=1$ mA, $I_{B}=0$	50			V
Collector Cut-off Current Collector Cut-off Current	I _{CBO}	$V_{CB}=30V, I_{E}=0$			10	nA
Base Cut-off Current	I _{CEO}	V _{CE} =30V, I _B =0 V _{BE} =5V, I _C =0			25	nA
* DC Current Gain	I _{EBO}	$V_{BE}=5V, I_{C}=0$ $V_{CE}=5V, I_{C}=10\mu A$	050		10	
	h _{FE}	$V_{CE}=5V, I_{C}=100\mu A$	250			
		$V_{CE}=5V$, $I_C=100\mu$ A	250		650	
		$V_{CE}=5V$, $I_B=10mA$	250 250			
* Collector-Emitter Saturation Voltage	V _{CE} (sat)	I _C =10mA, I _B =0.5mA	250		0.2	v
Base-Emitter On Voltage	TOE (Out)	I _C =100mA, I _B =5mA			0.6	v
Output Capacitance	V _{BF} (on)	I _C =1mA, V _{CE} =5V	0.56		0.66	V
Output Capacitance	C _{OB}	V _{CB} =10V, I _E =0 f=1MHz			3	pF
Current Gain Bandwidth Product		$V_{CF}=5V, I_{C}=1mA$				
	f _T	VCE-0V, IC- III/V	100		700	MHz
Noise Figure/Noise Voltage Level		V _{CE} =5V, I _C =100μA				
	NF/NV	(1) R _S =10KΩ, B _W =1Hz				
		f=100Hz				
: 2N6428					3/18.1	dB/nV
: 2N6428A					2/16.2	dB/nV
		(2) R _S =50KΩ, B _W =15.7Hz f=10Hz-10KHz			2/ 1012	dD,
: 2N6428						
: 2N6428A					6/5.7	dB/nV
		(1) R _S =500Ω, B _w =1Hz f=10Hz			4/4.6	dB/nV
: 2N6428						
: 2N6428A					3.5/4.3 3/4.1	dB/nV
					3/4.1	dB/nV

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

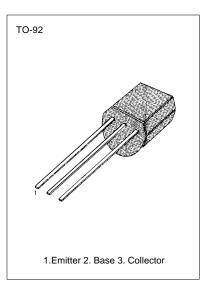
LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

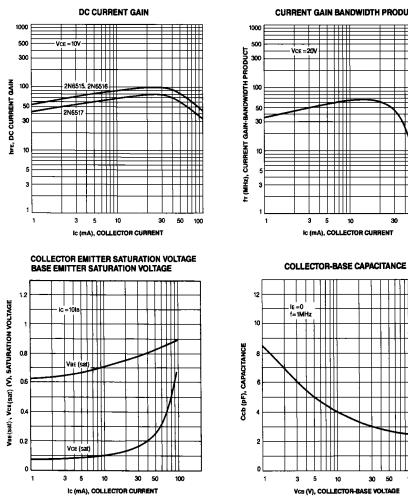

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

HIGH VOLTAGE TRANSISTOR

Collector-Emitter Voltage: V_{CEO}= 250V
 Collector Dissipation: P_C (max)=625mW

ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Collector Dissipation Junction Temperature Storage Temperature	V _{CEO} V _{CEO} V _{EBO} I _C P _C T _J T _{STG}	250 250 6 500 625 150 -55 ~ 150	° ° × × mA m ° ° °


ELECTRICAL CHARACTERISTICS (T_A=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter Breakdown Voltage	BV _{CEO}	$I_{C}=1mA$, $I_{B}=0$	250			V
* Collector-Base Breakdown Voltage	BV _{CBO}	$I_{c}=100\mu A, I_{E}=0$	250			V V
Emitter-Base Breakdown Voltage Collector Cut-off Current	BV _{EBO}	I _E =10μA, I _C =0 V _{CB} =150V, I _E =0	6		50	nA
Emitter Cut-off Current	I _{CBO}	$V_{BE} = 5V, I_{C} = 0$			50	nA
* DC Current Gain	l _{EBO} h _{FE}	$I_{C}=1mA$, $V_{CF}=10V$	35		50	10.0
	· ·FE	I _C =10mA, V _{CE} =10V	50			
		I _C =30mA, V _{CE} =10V	50		300	
		$I_{c}=50mA, V_{CE}=10V$	45		220	
Collector-Emitter Saturation Voltage		I _C =100mA, V _{CE} =10V I _C =10mA, I _B =1mA	25			
Collector-Emitter Saturation Voltage	V _{CE} (sat)	$I_{C}=20$ mA, $I_{B}=2$ mA			0.3	V
		$I_{c}=30mA$, $I_{B}=3mA$			0.35	V
		$I_{C}=50$ mA, $I_{B}=5$ mA			0.5	V V
Base-Emitter Saturation Voltage	V _{BF} (sat)	I _C =10mA, I _B =1mA			0.75	v
	、 ,	$I_{c}=20mA$, $I_{B}=2mA$			0.85	v
Collector-Base Capacitance		$I_{C}=30mA$, $I_{B}=3mA$			0.9	V
Conector-Dase Capacitance	C _{OB}	V _{CB} =20V, I _E =0 f=1MHz			6	pF
Current Gain Bandwidth Product	f _T	$I_c=10$ mA, $V_{cr}=20$ V	40		000	
	IT		40		200	MHz
Base Emitter On Voltage	V _{BE} (on)	I_C =100mA, V_{CE} =10V			2	V

* Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

30 50

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

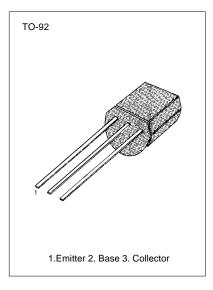
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.


HIGH VOLTAGE TRANSISTOR

Collector-Emitter Voltage: V_{CEO}=300V
 Collector Dissipation: P_C (max)=625mW

ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Collector Dissipation Junction Temperature Storage Temperature	$V_{CBO} \\ V_{CEO} \\ V_{EBO} \\ I_C \\ P_C \\ T_J \\ T_{STG}$	300 300 6 500 625 150 -55 ~ 150	V V mA mW °C ℃

Refer to 2N6515 for graphs

ELECTRICAL CHARACTERISTICS (T_A=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter Breakdown Voltage * Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cut-off Current Emitter Cut-off Current * DC Current Gain	BV _{CEO} BV _{CBO} I _{CBO} I _{EBO} h _{FE}	$\begin{split} I_{C}=1mA, I_{B}=0 \\ I_{C}=100\muA, I_{E}=0 \\ I_{E}=10\muA, I_{C}=0 \\ V_{CB}=200V, I_{E}=0 \\ V_{BE}=5V, I_{C}=0 \\ I_{C}=1mA, V_{CE}=10V \\ I_{C}=10mA, V_{CE}=10V \\ I_{C}=30mA, V_{CE}=10V \end{split}$	300 300 6 30 45		50 50	V V nA nA
Collector-Emitter Saturation Voltage	V _{CE} (sat)	$\label{eq:lc} \begin{array}{l} I_{C} = 50mA, \ V_{CE} = 10V \\ I_{C} = 100mA, \ V_{CE} = 10V \\ I_{C} = 10mA, \ I_{B} = 1mA \\ I_{C} = 20mA, \ I_{B} = 2mA \\ I_{C} = 30mA, \ I_{B} = 3mA \end{array}$	45 40 20		270 200 0.3 0.35 0.5	V V V
Base-Emitter Saturation Voltage	V _{BE} (sat)	I_{C} =50mA, I_{B} =5mA I_{C} =10mA, I_{B} =1mA I_{C} =20mA, I_{B} =2mA I_{C} =30mA, I_{B} =3mA			1 0.75 0.85 0.9	V
Collector-Base Capacitance	C _{OB}	V _{CB} =20V, I _E =0 f=1MHz			6	pF
Current Gain Bandwidth Product	f _T	$I_{C}=10$ mA, $V_{CE}=20V$	40		200	MHz
Base Emitter On Voltage	V _{BE} (on)	I _C =100mA, V _{CE} =10V			2	V

* Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

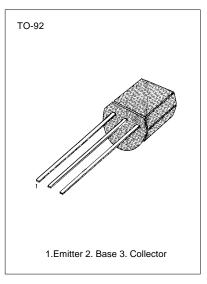
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

HIGH VOLTAGE TRANSISTOR


• Collector-Emitter Voltage: V_{CEO} =350V

Collector Dissipation: P_C (max)=625mW

ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Collector Dissipation Junction Temperature Storage Temperature	V _{CBO} V _{CEO} V _{EBO} I _C P _C T _J T _{STG}	350 350 6 500 625 150 -55 ~ 150	° ° mm No no mmm N mmmm N mmmm N mmmmm N mmmmm N mmmmm N mmmmm N mmmmmm N mmmmmm N mmmmmm N mmmmmm N mmmmmmm N mmmmmmm N mmmmmmmm

Refer to 2N6515 for graphs

ELECTRICAL CHARACTERISTICS (T_A=25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
* Collector-Emitter Breakdown Voltage	BV _{CEO}	$I_{c}=1mA$, $I_{B}=0$	350			V
Collector-Base Breakdown Voltage	BV _{CBO}	$I_{c}=100\mu A, I_{E}=0$	350			V V
Emitter-Base Breakdown Voltage Collector Cut-off Current	BV _{EBO}	I _E =10μA, I _C =0 V _{CB} =250V, I _E =0	6		50	nA
Emitter Cut-off Current	I _{CBO} I _{EBO}	$V_{EB}=5V, I_{C}=0$			50 50	nA
* DC Current Gain	h _{EE}	$I_{c}=1mA$, $V_{cE}=10V$	20		50	
		I _C =10mA, V _{CE} =10V	30			
		I _C =30mA, V _{CE} =10V	30		200	
		$I_{c}=50mA, V_{CE}=10V$	20		200	
Collector-Emitter Saturation Voltage		I _C =100mA, V _{CE} =10V I _C =10mA, I _B =1mA	15			
Collector-Emitter Saturation Voltage	V _{CE} (sat)	$I_{c}=20mA$, $I_{B}=2mA$			0.3	V
		I _C =30mA, I _B =3mA			0.35 0.5	V V
		I _C =50mA, I _B =5mA			0.5	V
Base-Emitter Saturation Voltage	V _{BE} (sat)	$I_{c}=10mA$, $I_{B}=1mA$			0.75	v
		I _C =20mA, I _B =2mA I _C =30mA, I _B =3mA			0.85	V
Collector-Base Capacitance	<u> </u>	$V_{CB}=20V, I_{E}=0$			0.9	V
	Ссв	f=1MHz			6	pF
* Current Gain Bandwidth Product	f _T	$I_{C}=10$ mA, $V_{CE}=20$ V	40		200	MHz
Base Emitter On Voltage	V _{BE} (on)	I_{C} =100mA, V_{CE} =10V			2	V

* Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

©1999 Fairchild Semiconductor Corporation

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

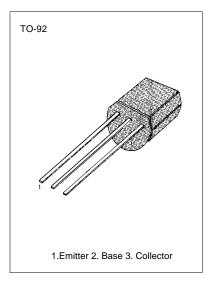
LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.


PNP EPITAXIAL SILICON TRANSISTOR

HIGH VOLTAGE TRANSISTOR

ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Base Current Collector Dissipation Derate above 25°C Junction Temperature Storage Temperature	V _{CBO} V _{CEO} Ic Pc T _J T _{STG}	-250 -250 -5 -500 -250 0.625 5 150 -55 ~ 150	∨ ∨ mA mW W mW/°C °C °C

Refer to 2N6520 for graphs

ELECTRICAL CHARACTERISTICS (T_A=25°C)

Characteristic	Symbol	Test Conditions	Min	Max	Unit
* Collector-Base Breakdown Voltage Collector-Emitter Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cut-off Current Emitter Cut-off Current * DC Current Gain	BV _{CBO} BV _{CEO} BV _{EBO} I _{CBO} I _{EBO} h _{FE}	$\begin{array}{l} I_{C}=-100\mu A,\ I_{E}=0\\ I_{C}=-1mA,\ I_{B}=0\\ I_{E}=-10\mu A,\ I_{C}=0\\ V_{CB}=-150V,\ I_{E}=0\\ V_{CB}=-4V,\ I_{C}=0\\ V_{CE}=-10V,\ I_{C}=-1mA\\ V_{CE}=-10V,\ I_{C}=-10mA\\ V_{CE}=-10V,\ I_{C}=-30mA\\ V_{CE}=-10V,\ I_{C}=-50mA \end{array}$	-250 -250 -5 35 50 50 45	-50 -50 300 220	V V nA nA
Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	V _{CE} (sat)	$ \begin{array}{l} V_{CE} = -10V, \ I_{C} = -100MA \\ I_{C} = -10mA, \ I_{B} = -1mA \\ I_{C} = -20mA, \ I_{B} = -2mA \\ I_{C} = -30mA, \ I_{B} = -3mA \\ I_{C} = -50mA, \ I_{B} = -5mA \\ I_{C} = -10mA, \ I_{B} = -1mA \end{array} $	25	-0.30 -0.35 -0.50 -1	V V V V
Collector-Emitter Capacitance * Current Gain Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance	V_{BE} (sat) V_{BE} (on) f_{T} C_{CB} C_{EB}	$\begin{array}{l} l_{C} = -1011A, \ l_{B} = -111A\\ l_{C} = -20mA, \ l_{B} = -2mA\\ l_{C} = -30mA, \ l_{B} = -3mA\\ V_{CE} = -10V, \ l_{C} = -100mA\\ V_{CE} = -20V, \ l_{C} = -10mA\\ V_{CB} = -20V, \ l_{E} = 0, \ f = 1MHz\\ V_{EB} = -0.5V, \ l_{C} = 0, \ f = 1MHz\\ \end{array}$	40	-0.75 -0.85 -0.90 -2 200 6 100	V V V MHz pF pF
Turn On Time Turn Off Time	T _{on} T _{off}	$ \begin{array}{l} V_{BE} \; (off) = -2V, \; V_{CC} = -100V \\ I_C = -50mA, \; I_B 1 = -10mA \\ V_{CC} = -100V, \; I_C = -50mA \\ I_B 1 = I_B 2 = 10mA \end{array} $		200 3.5	ns ns

* Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

Rev. B

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

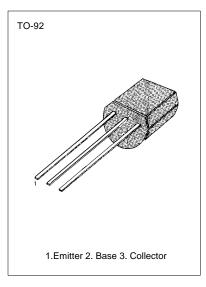
LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.


PNP EPITAXIAL SILICON TRANSISTOR

HIGH VOLTAGE TRANSISTOR

ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Base Current Collector Dissipation Derate above 25°C Junction Temperature Storage Temperature	V _{CBO} V _{CEO} I _C I _B P _C T _J T _{STG}	-300 -300 -5 -500 -250 0.625 5 150 -55 ~ 150	∨ ∨ mA mA W ©C °C °C

Refer to 2N6520 for graphs

ELECTRICAL CHARACTERISTICS (T_A=25°C)

Characteristic	Symbol	Test Conditions	Min	Max	Unit
Collector-Base Breakdown Voltage * Collector-Emitter Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cut-off Current Emitter Cut-off Current * DC Current Gain	BV _{CBO} BV _{CEO} BV _{EBO} I _{CBO} I _{EBO} h _{FE}	$\begin{array}{l} l_{C}=-100\mu A,\ l_{E}=0\\ l_{C}=-1mA,\ l_{B}=0\\ l_{E}=-10\mu A,\ l_{C}=0\\ V_{CB}=-200V,\ l_{E}=0\\ V_{EB}=-4V,\ l_{C}=0\\ V_{CE}=-10V,\ l_{C}=-1mA\\ V_{CE}=-10V,\ l_{C}=-10mA\\ V_{CE}=-10V,\ l_{C}=-30mA\\ V_{CE}=-10V,\ l_{C}=-50mA\\ V_{CE}=-10V,\ l_{C}=-100mA\\ \end{array}$	-300 -300 -5 30 45 45 40 20	-50 -50 270 200	V V nA nA
Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage	V _{CE} (sat)	$l_{c}^{=}$ -10mA, $l_{B}^{=}$ -1mA $l_{C}^{=}$ -20mA, $l_{B}^{=}$ -2mA $l_{C}^{=}$ -30mA, $l_{B}^{=}$ -3mA $l_{C}^{=}$ -50mA, $l_{B}^{=}$ -5mA $l_{c}^{=}$ -1mA	20	-0.30 -0.35 -0.50 -1	> > > >
Base Emitter On Voltage * Current Gain Bandwidth Product Collector-Base Capacitance Emitter-Base Capacitance	$V_{BE} \text{ (sat)}$ $V_{BE} \text{ (on)}$ f_{T} C_{CB} C_{EB}	$\begin{array}{l} l_{C} = -20MA, l_{B} = -2MA \\ l_{C} = -30MA, l_{B} = -3mA \\ V_{CE} = -10V, l_{C} = -100MA \\ V_{CE} = -20V, l_{C} = -10MA \\ V_{CB} = -20V, l_{E} = 0, f = 1MHz \\ V_{EB} = -0.5V, l_{C} = 0, f = 1MHz \end{array}$	40	-0.75 -0.85 -0.90 -2 200 6 100	V V V MHz pF pF
Turn On Time Turn Off Time	T _{on} T _{off}	$\begin{array}{l} V_{BE} \ (off)=\ -2V, \ V_{CC}=\ -100V \\ I_{C}=\ -50mA, \ I_{B}1=\ -10mA \\ V_{CC}=\ -100V, \ I_{C}=\ -50mA \\ I_{B}1=I_{B}2=10mA \end{array}$		200 3.5	ns ns

* Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

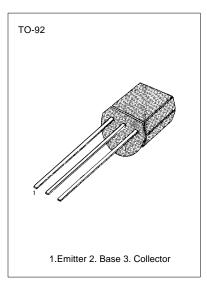
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

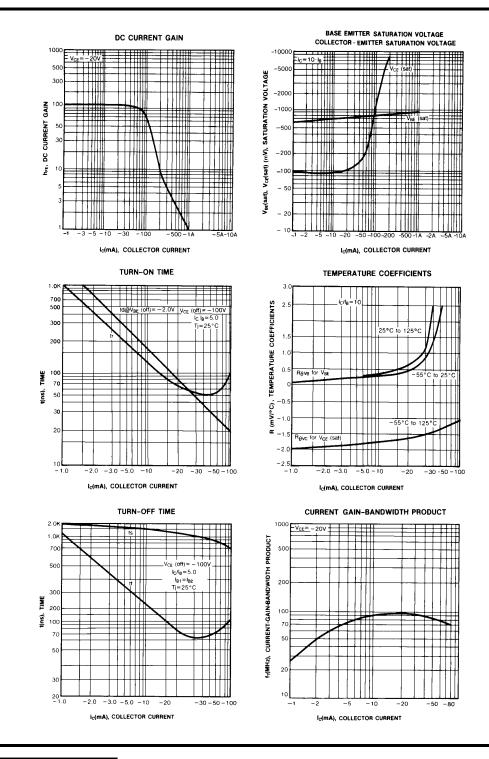

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

PNP EPITAXIAL SILICON TRANSISTOR

HIGH VOLTAGE TRANSISTOR

ABSOLUTE MAXIMUM RATINGS (T_A=25°C)

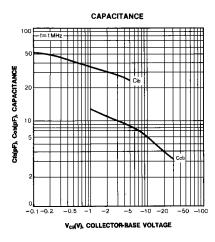
Characteristic	Symbol	Rating	Unit
Collector-Base Voltage Collector-Emitter Voltage Emitter-Base Voltage Collector Current Base Current Collector Dissipation Derate above 25 Junction Temperature Storage Temperature	V _{CBO} V _{EEO} I _C I _B P _C T _J T _{STG}	-350 -350 -5 -500 -250 0.625 5 50 -55 ~ 150	∨ ∨ mA mA W mW/°C °C °C



ELECTRICAL CHARACTERISTICS (T_A=25°C)

Characteristic	Symbol	Test Conditions	Min	Max	Unit
Collector-Base Breakdown Voltage	BV _{CBO}	$I_{c} = -100\mu A, I_{E} = 0$	-350		V
* Collector-Emitter Breakdown Voltage	BVCEO	$I_{\rm C}$ = -1mA, $I_{\rm B}$ =0	-350		V
Emitter-Base Breakdown Voltage	BV _{EBO}	I _E = -10μΑ, I _C =0	-5		V
Collector Cut-off Current	I _{CBO}	V _{CB} = -250V, I _E =0		-50	nA
Emitter Cut-off Current	I _{EBO}	V_{EB} = -4V, I_{C} =0		-50	nA
* DC Current Gain	h _{FE}	V_{CE} = -10V, I_{C} = -1mA	20		
		V_{CE} = -10V, I_{C} = -10mA	30		
		V_{CE} = -10V, I_{C} = -30mA	30	200	
		$V_{CE} = -10V, I_{C} = -50mA$	20	200	
Collector-Emitter Saturation Voltage		V _{CE} = -10V, I _C = -100mA I _C = -10mA, I _B = -1mA	15		
Collector-Emilier Saturation voltage	V _{CE} (sat)	$I_{C} = -20 \text{mA}, I_{B} = -2 \text{mA}$		-0.30	VV
		$I_{c} = -30$ mA, $I_{B} = -3$ mA		-0.35 -0.50	V
		I_{c} = -50mA, I_{B} = -5mA		-0.50	v
Base-Emitter Saturation Voltage	V _{BF} (sat)	I_{C} = -10mA, I_{B} = -1mA		-0.75	v
	VBE (OUT)	I _C = -20mA, I _B = -2mA		-0.85	v
		I _C = -30mA, I _B = -3mA		-0.90	V
Base-Emitter On Voltage	V _{BE} (on)	V _{CE} = -10V, I _C = -100mA		-2	V
* Current Gain Bandwidth Product	f⊤	V _{CE} = -20V, I _C = -10mA	40	200	MHz
Collector-Base Capacitance	C _{CB}	V_{CB} = -20V, I_E =0, f=1MHz	-	6	pF
Emitter-Base Capacitance	CEB	V _{EB} = -0.5V, I _C =0, f=1MHz		100	pF
Turn On Time		\/ (aff) a\/ \/ 100\/			
	T _{ON}	V _{BE} (off)= -2V, V _{CC} = -100V I _C = -50mA, I _B 1= -10mA		200	ns
Turn Off Time	TOFF	V_{cc} = -100V, I_c = -50mA		3.5	ns
	• OFF	I _B 1=I _B 2=10mA		0.0	

* Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%



FAIRCHILD

SEMICONDUCTOR IM

PNP EPITAXIAL SILICON TRANSISTOR

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

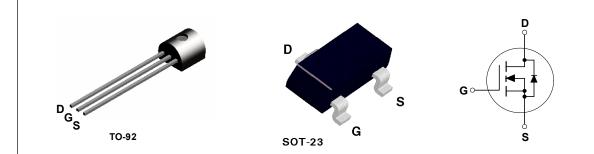
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

November 1995


2N7000 / 2N7002 / NDS7002A N-Channel Enhancement Mode Field Effect Transistor

General Description

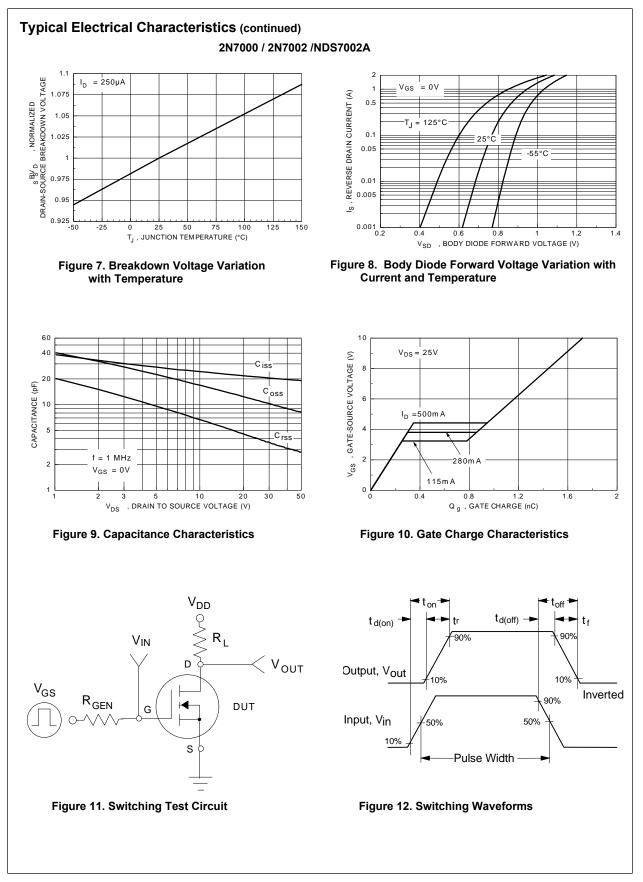
These N-Channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 400mA DC and can deliver pulsed currents up to 2A. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.

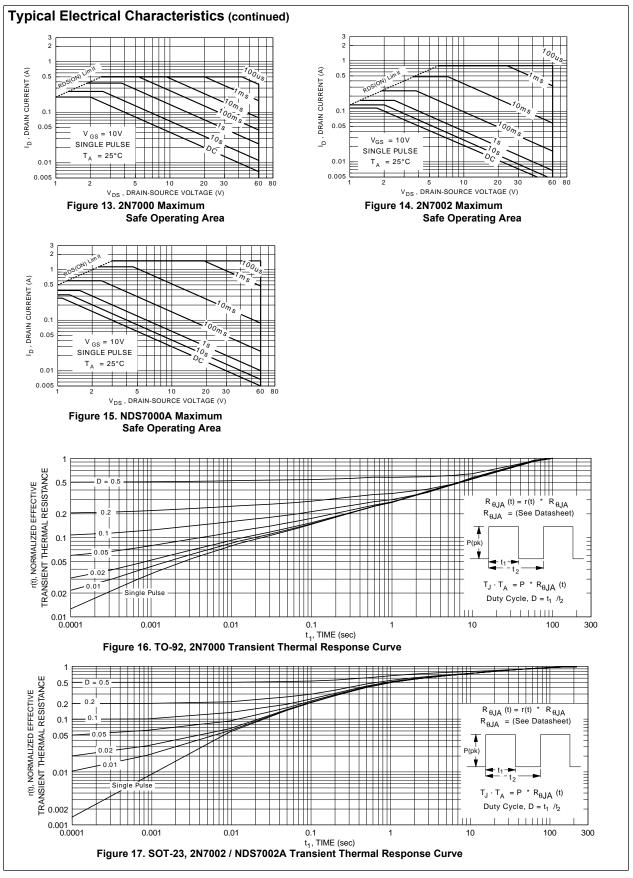
Features

- High density cell design for low R_{DS(ON)}.
- Voltage controlled small signal switch.
- Rugged and reliable.
- High saturation current capability.

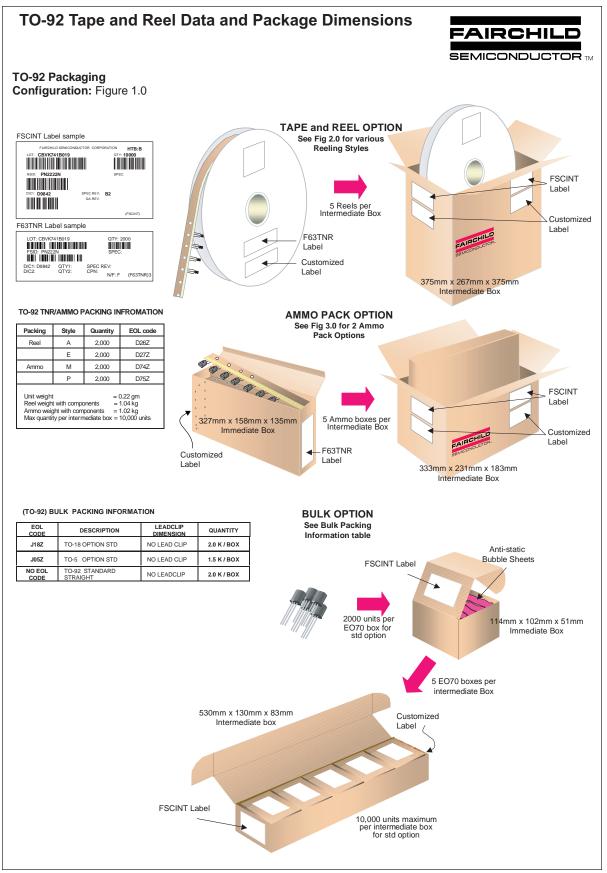

Absolute Maximum Ratings $T_{4} = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	2N7000	2N7002	NDS7002A	Units
V _{DSS}	Drain-Source Voltage		60		V
V_{DGR}	Drain-Gate Voltage ($R_{GS} \leq 1 M\Omega$)	60			V
V _{GSS}	Gate-Source Voltage - Continuous	±20			V
	- Non Repetitive (tp < 50µs)		±40		1
I _D	Maximum Drain Current - Continuous	200	115	280	mA
	- Pulsed	500	800	1500	
P _D	Maximum Power Dissipation	400	200	300	mW
	Derated above 25°C	3.2	1.6	2.4	mW/°C
Τ _J ,Τ _{stg}	Operating and Storage Temperature Range	-55	to 150	-65 to 150	°C
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds		300	·	°C
THERMA	L CHARACTERISTICS				
R _{θJA}	Thermal Resistance, Junction-to-Ambient	312.5	625	417	°C/W

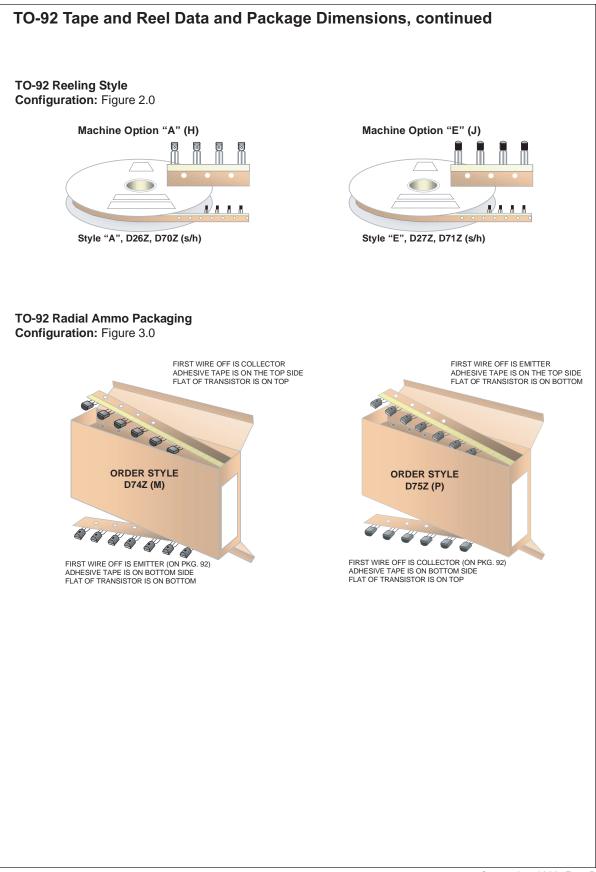

© 1997 Fairchild Semiconductor Corporation

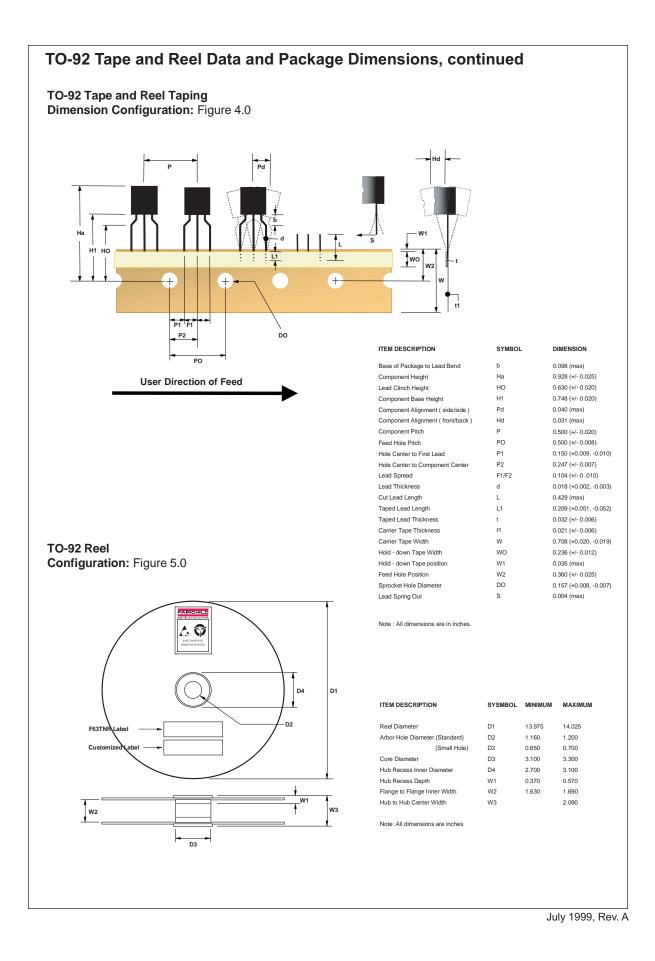

Symbol	Parameter	Conditions		Туре	Min	Тур	Max	Units
OFF CHA	RACTERISTICS							
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 10 \mu A$		All	60			V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\rm DS} = 48 \text{ V}, V_{\rm GS} = 0 \text{ V}$		2N7000			1	μA
			T _J =125°C				1	mA
		$V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}$		2N7002			1	μA
			T_=125°C	NDS7002A			0.5	mA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{\rm GS}=15~V,~V_{\rm DS}=0~V$		2N7000			10	nA
		$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$		2N7002 NDS7002A			100	nA
	Gate - Body Leakage, Reverse	V_{GS} = -15 V, V_{DS} = 0 V		2N7000			-10	nA
		V_{GS} = -20 V, V_{DS} = 0 V		2N7002 NDS7002A			-100	nA
ON CHAF	RACTERISTICS (Note 1)						-	
V _{GS(th)}	Gate Threshold Voltage	$V_{\text{DS}} = V_{\text{GS}}, I_{\text{D}} = 1 \text{ mA}$		2N7000	0.8	2.1	3	V
	$V_{\rm DS} = V_{\rm GS}, \ I_{\rm D} = 250 \ \mu A$		2N7002 NDS7002A	1	2.1	2.5		
R _{DS(ON)}	R _{DS(ON)} Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 500 \text{ mA}$		2N7000		1.2	5	Ω
			T _J =125°C			1.9	9	
		V_{GS} = 4.5 V, I_{D} = 75 mA				1.8	5.3	
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 500 \text{ mA}$		2N7002		1.2	7.5	
			$T_J = 100^{\circ}C$			1.7	13.5	
		V_{GS} = 5.0 V, I_{D} = 50 mA		1.7	1.7	7.5		
			T _J =100C			2.4	13.5	
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 500 \text{ mA}$		NDS7002A		1.2	2	
			T _J =125°C			2	3.5	
		V_{GS} = 5.0 V, I_{D} = 50 mA				1.7	3	
			T _J =125°C			2.8	5	
V _{DS(ON)}	Drain-Source On-Voltage	$V_{GS} = 10 \text{ V}, \ I_{D} = 500 \text{ m/}$	۱	2N7000		0.6	2.5	V
		$V_{GS} = 4.5 \text{ V}, \ I_{D} = 75 \text{ mA}$				0.14	0.4	
		$V_{GS} = 10 \text{ V}, \ I_{D} = 500 \text{mA}$		2N7002		0.6	3.75	
		$V_{GS} = 5.0 \text{ V}, \ I_{D} = 50 \text{ mA}$				0.09	1.5	
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 500 \text{mA}$		NDS7002A		0.6	1	
		V _{GS} = 5.0 V, I _D = 50 mA				0.09	0.15	

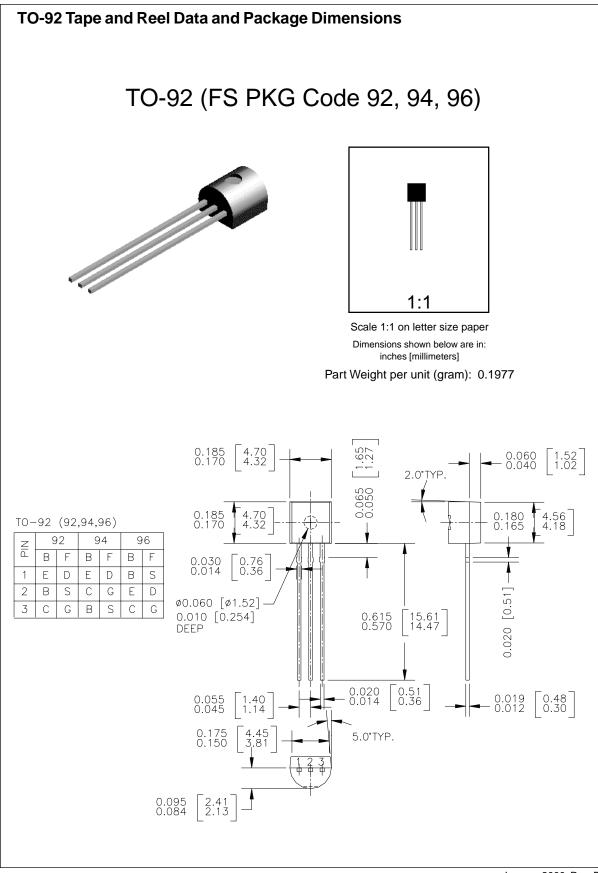
Symbol	Parameter	Conditions	Туре	Min	Тур	Мах	Units
ON CHAP	RACTERISTICS Continued (Note 1)	•					
I _{D(ON)}	On-State Drain Current	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}$	2N7000	75	600		mA
		$V_{GS} = 10 \text{ V}, V_{DS} \ge 2 \text{ V}_{DS(on)}$	2N7002	500	2700		
		$V_{GS} = 10 \text{ V}, V_{DS} \ge 2 V_{DS(on)}$	NDS7002A	500	2700		
g _{FS}	Forward Transconductance	$V_{\rm DS} = 10 \text{ V}, \text{ I}_{\rm D} = 200 \text{ mA}$	2N7000	100	320		mS
		$V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$	2N7002	80	320		
		$V_{DS} \ge 2 V_{DS(on)}, I_D = 200 \text{ mA}$	NDS7002A	80	320		
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$	All		20	50	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	All		11	25	pF
C _{rss}	Reverse Transfer Capacitance		All		4	5	pF
t _{on} Turn-On Time		2N7000			10	ns	
			2N700 NDS7002A			20	
t _{off}	Turn-Off Time	$V_{\rm DD} = 15 \text{ V}, \text{ R}_{\rm L} = 25 \Omega, \\ \text{I}_{\rm D} = 500 \text{ mA}, \text{ V}_{\rm GS} = 10 \text{ V}, \\ \text{R}_{\rm GEN} = 25$	2N7000			10	ns
			2N700 NDS7002A			20	
DRAIN-S	OURCE DIODE CHARACTERISTIC	S AND MAXIMUM RATINGS					
I _s	Maximum Continuous Drain-Sour	ce Diode Forward Current	2N7002			115	mA
			NDS7002A			280	
I _{sm}	Maximum Pulsed Drain-Source D	Diode Forward Current	2N7002			0.8	А
			NDS7002A			1.5	
V _{SD}	Drain-Source Diode Forward	$V_{GS} = 0 \text{ V}, I_{S} = 115 \text{ mA} (Note 1)$	2N7002		0.88	1.5	V
	Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 400 \text{ mA}$ (Note 1)	NDS7002A		0.88	1.2	

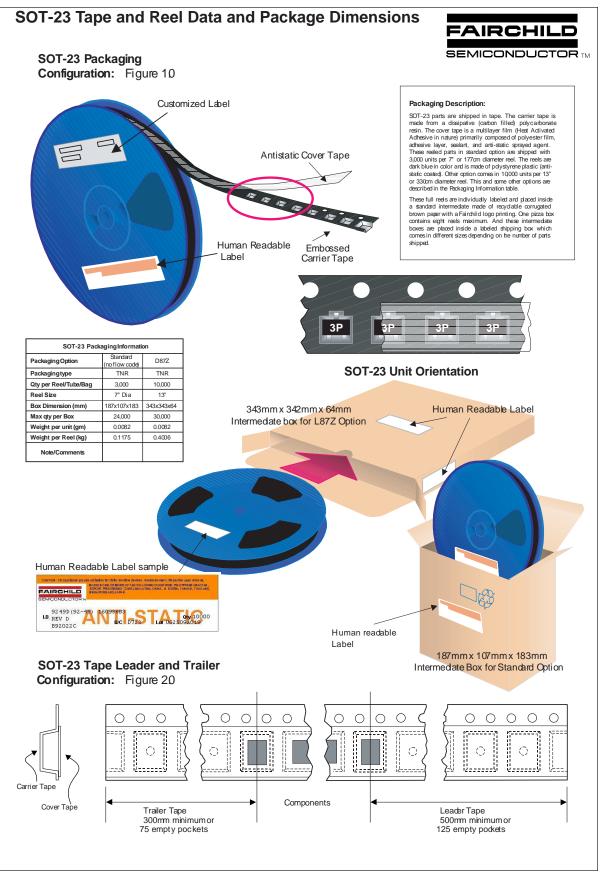


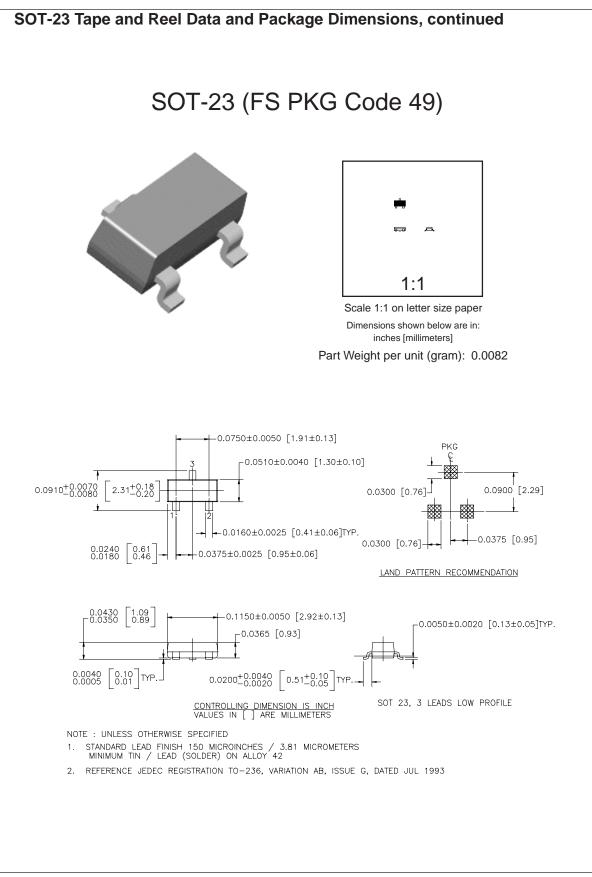
2N7000.SAM Rev. A1






2N7000.SAM Rev. A1


September 1999, Rev. B


January 2000, Rev. B

September 1999, Rev. C

September 1999, Rev. C

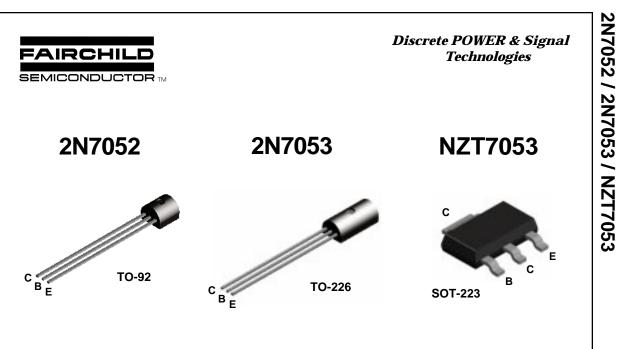
September 1998, Rev. A1

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR™ MICROWIRE™ POP™ PowerTrench® QFET™ QS™ Quiet Series™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.


LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

NPN Darlington Transistor

This device is designed for applications requiring extremely high gain at collector currents to 1.0 A and high breakdown voltage. Sourced from Process 06.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	100	V
V _{CBO}	Collector-Base Voltage	100	V
V _{EBO}	Emitter-Base Voltage	12	V
Ic	Collector Current - Continuous	1.5	А
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic		Max		Units
		2N7052	2N7053	*NZT7053	
PD	Total Device Dissipation	625	1,000	1,000	mW
	Derate above 25°C	5.0	8.0	8.0	mW/°C
R _{θJC}	Thermal Resistance, Junction to Case	83.3	125		°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	200	50	125	°C/W

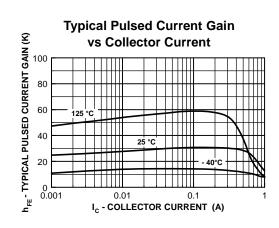
^{*}Device mounted on FR-4 PCB 36 mm X 18 mm X 1.5 mm; mounting pad for the collector lead min. 6 cm².

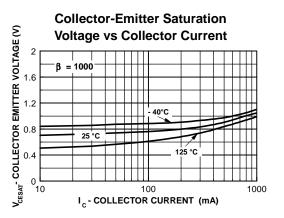
NPN Darlington Transistor

(continued)

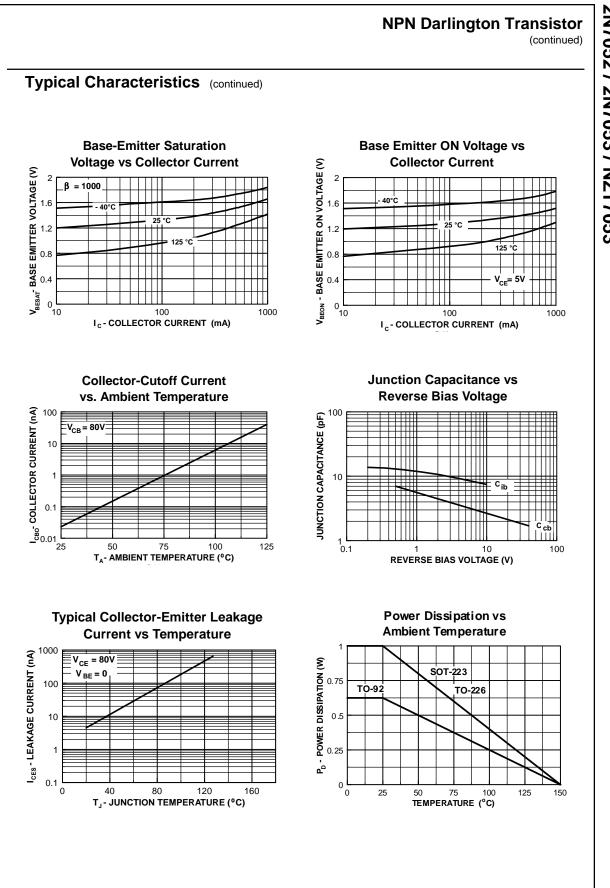
Electrical Characteristics TA = 25°C unless otherwise noted							
Symbol	Parameter	Test Conditions	Min	Max	Units		
OFF CHA	RACTERISTICS						
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_{\rm C} = 1.0 \text{ mA}, I_{\rm B} = 0$	100		V		
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm E} = 0$	100		V		
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_{\rm E} = 1.0 \text{ mA}, I_{\rm C} = 0$	12		V		
I _{CBO}	Collector-Cutoff Current	$V_{CB} = 80 \text{ V}, I_E = 0$		0.1	μΑ		
I _{CES}	Collector-Cutoff Current	$V_{CE} = 80 \text{ V}, I_E = 0$		0.2	μΑ		
I _{EBO}	Emitter-Cutoff Current	$V_{EB} = 7.0 \text{ V}, I_{C} = 0$		0.1	μΑ		

ON CHARACTERISTICS*


h _{FE}	DC Current Gain	$I_{C} = 100 \text{ mA}, V_{CE} = 5.0 \text{ V}$ $I_{C} = 1.0 \text{ A}, V_{CE} = 5.0 \text{ V}$	10,000 1,000	20,000	
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_{\rm C} = 100 \text{ mA}, I_{\rm B} = 0.1 \text{ mA}$		1.5	V
$V_{\text{BE(on)}}$	Base-Emitter On Voltage	$I_{C} = 100 \text{ mA}, V_{BE} = 5.0 \text{ V}$		2.0	V


SMALL SIGNAL CHARACTERISTICS

FT	Transition Frequency	$I_{C} = 100 \text{ mA}, V_{CE} = 5.0 \text{ V},$	200		MHz
C _{cb}	Collector-Base Capacitance	V _{CB} = 10 V,f = 1.0 MHz 2N7052		10	pF
		2N7053		8.0	-


*Pulse Test: Pulse Width £ 300 ms, Duty Cycle £ 1.0%

Typical Characteristics

2N7052 / 2N7053 / NZT7053

2N7052 / 2N7053 / NZT7053

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM CoolFETTM CROSSVOLTTM E²CMOSTM FACTTM FACT Quiet SeriesTM FAST[®] FAST[®] FASTrTM GTOTM HiSeCTM ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 TinyLogic[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.