APPLICATIONS:

- High-Speed Switching
- Medium-Current Switching
- High-Frequency Amplifiers

FEATURES:

- Collector-Emitter Sustaining Voltage: $\mathrm{V}_{\text {CEO(sus) }}=\mathbf{- 6 0} \mathrm{Vdc}$ (Min)
- DC Current Gain: $h_{\text {FE }}=30-150$ @ $\mathrm{IC}=1.5$ Adc
- Low Collector-Emitter Saturation Voltage:
$V_{C E}($ sat $)=-0.75 \mathrm{Vdc}$ @ $\mathrm{Ic}=1.5 \mathrm{Adc}$

Silicon PNP Power Transistors

- High Current-Gain - Bandwidth Product: $\mathrm{f}_{\mathrm{T}}=90 \mathrm{MHz}$ (Typ)

DESERIPTIOM:

These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power 5 witching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to $200^{\circ} \mathrm{C}$ permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability and long life.

TO-5
MEALIE MAMA RALES:

EIECTRICH EHRRETEISTICS:

(25 ${ }^{\circ}$ Case Temperature Unless Otherwise Noted)

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	VALUE		Units
			Min.	Max.	
$\mathrm{V}_{\text {ceO }}$ (sus) ${ }^{*}$	Collector-Emitter Sustaining Voltage	$\mathrm{IC}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$ (Note 1)	-60	----	Vdc
BVCBO*	Collector-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{C}}=\mathbf{1 0 0} \boldsymbol{\mu} \mathrm{Adc}, \mathrm{IE}_{\mathrm{E}}=0$	-60	----	Vdc
BVEBO*	Emitter-Base Breakdown Voltage	$\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{Adc}, \mathrm{IC}=0$	-4.0	-	Vdc
ICEX*	Collector Cutoff Current	$\mathrm{V}_{\mathrm{cE}}=-60 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}(\mathrm{ofif})=2.0 \mathrm{Vdc}$	\cdots	1.0	$\mu \mathrm{Adc}$
ICBO*	Collector Cutoff Current	$\mathrm{V}_{\mathrm{CB}}=-60 \mathrm{~V}, \mathrm{IE}=0, \mathrm{~T}_{\mathrm{C}}=150{ }^{\circ} \mathrm{C}$	--"-	150	$\boldsymbol{\mu A d c}$
hFE^{*}	DC Current Gain (Note 1)	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=-1.0 \mathrm{Vdc} \\ & \mathrm{IC}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=-2.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=-3.0 \mathrm{Vdc} \\ & \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & 35 \\ & 30 \\ & 20 \\ & 20 \end{aligned}$	$\begin{gathered} ---- \\ 150 \\ ----- \end{gathered}$	н世н阤 - - --mes 배ํㅜํ
VCE(sat)*	Collector-Emitter Saturation Voltage (Note 1)	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=150 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=250 \mathrm{mAdc} \end{aligned}$	$-\cdots$	$\begin{gathered} -0.5 \\ -0.75 \\ -1.3 \end{gathered}$	Vdc Vdc Vdc
$V_{B E}\left(\right.$ sat) ${ }^{*}$	Base-Emitter Saturation Voltage (Note 1)	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc} \\ & \mathrm{IC}_{\mathrm{C}}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=150 \mathrm{mAdc} \\ & \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=250 \mathrm{mAdc} \end{aligned}$	$\begin{gathered} ---- \\ -0.9 \\ ---- \end{gathered}$	$\begin{aligned} & -1.0 \\ & -1.4 \\ & -2.0 \end{aligned}$	Vdc Vdc Vdc
$\mathbf{f T}^{*}$	Current Gain Bandwidth Product (Note 2)	$\mathrm{Ic}_{\mathrm{C}}=\mathbf{1 0 0} \mathrm{mAdc}, \mathrm{V}_{\text {ce }}=\mathbf{- 5 . 0} \mathrm{Vdc}, \mathrm{f}_{\text {test }}=\mathbf{2 0} \mathbf{M H z}$	60	---	MHz
Cob^{*}	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}$	--	120	pF
$\mathrm{Cib}^{\text {* }}$	Input Capacitance	$\mathrm{V}_{\mathrm{EB}}=-3.0 \mathrm{Vdc}, \mathrm{Ic}=0, \mathrm{f}=0.1 \mathrm{MHz}$	----	1000	pF
td*	Delay Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=-30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}(\mathrm{off})}=0, \mathrm{Ic}=1.5 \mathrm{Adc}, \\ & \mathrm{I}_{\mathrm{B} 1}=150 \mathrm{mAdc} \end{aligned}$	----	35	ns
tr*	Rise Time	$\begin{aligned} & V_{c c}=-30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}(\mathrm{off})}=0, \mathrm{IC}_{\mathrm{c}}=1.5 \mathrm{Adc}, \\ & \mathrm{I}_{\mathrm{B} 1}=150 \mathrm{mAdc} \end{aligned}$	----	65	ns
ts*	Storage Time	$V_{C C}=-30 \mathrm{Vdc}, \mathrm{IC}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=150 \mathrm{mAdc}$	---	325	ns
$\mathbf{t f}^{*}$	Fall Time	$V_{C c}=-30 \mathrm{Vdc}, \mathrm{IC}=1.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=\mathrm{I}_{\mathrm{B} 2}=150 \mathrm{mAdc}$	-	75	ns

PAEMAGE MECHAMCAL DATA:

