New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

The RF Line NPN Silicon RF Power Transistor

... designed primarily for wideband large-signal output amplifier stages in the 225 to 400 MHz frequency range.

- Guaranteed Performance in 225 to 400 MHz Broadband Amplifier @ 28 Vdc Output Power = 60 Watts over 225 to 400 MHz Band Minimum Gain = 7.8 dB @ 400 MHz
- Built–In Matching Network for Broadband Operation Using Double
 Match Technique
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- · Gold Metallization System for High Reliability Applications

TELEPHONE: (973) 376-2922

(212) 227-6005 FAX: (973) 376-8960

60 W, 225 to 400 MHz CONTROLLED "Q" BROADBAND RF POWER TRANSISTOR NPN SILICON

(continued)

MAXIMUM RATINGS*

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	33	Vdc	
Collector-Base Voltage	Vсво	60	Vdc	
Emitter–Base Voltage	VEBO	4.0	Vdc	
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	146 0.83	Watts W/ºC	
Storage Temperature Range	T _{stg}	-65 to +200	√C	

THERMAL CHARACTERISTICS

Characteristic		Max	Unit
Thermal Resistance, Junction to Case	R _{θJC}	1.2	°C/W

ELECTRICAL CHARACTERISTICS* (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 50 mAdc, I _B = 0)	V(BR)CEO	33	_	-	Vdc
Collector–Emitter Breakdown Voltage (I _C = 50 mAdc, V _{BE} = 0)	V(BR)CES	60	_	-	Vdc
Emitter–Base Breakdown Voltage (I _E = 5.0 mAdc, I _C = 0)	V(BR)EBO	4.0		-	Vdc
Collector Cutoff Current (V _{CB} = 30 Vdc, I _E = 0)	СВО		_	2.0	mAdc

NOTE:

 These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as RF amplifiers.

* Indicates JEDEC Registered Data.

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS			•		
DC Current Gain (I _C = 1.0 Adc, V _{CE} = 5.0 Vdc)	hFE	10	_	100	
DYNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}		67	75	pF
BROADBAND FUNCTIONAL TESTS (Figure 6)					
Common–Emitter Amplifier Power Gain (V _{CC} = 28 Vdc, P _{out} = 60 W, f = 225-400 MHz)	GpE	7.8	8.5	_	dB
Electrical Ruggedness (P _{out} = 60 W, V _{CC} = 28 Vdc, f = 400 MHz, VSWR 30:1 all phase angles)	Ψ	No Degradation in Output Power			_
NARROW BAND FUNCTIONAL TESTS (Figure 1)					
Common–Emitter Amplifier Power Gain (V _{CC} = 28 Vdc, P _{out} = 60 W, f = 400 MHz)	GPE	7.8	10	-	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 60 W, f = 400 MHz)	η	55		—	%

.

ELECTRICAL CHARACTERISTICS* — continued (T_C = 25°C unless otherwise noted.)

* Indicates JEDEC Registered Data.

L4 — 10 μH L5 — 1 Turn #16 AWG, 5/16″ I.D.

Figure 1. 400 MHz Test Amplifier (Narrow Band)